-
Notifications
You must be signed in to change notification settings - Fork 13
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
adding #7
base: master
Are you sure you want to change the base?
adding #7
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,115 @@ | ||
import random | ||
import math | ||
|
||
import utils | ||
|
||
def p_perms(p=99,n=100,mark=None): | ||
mean_nn_dist = [] | ||
for i in range(p): | ||
temp=utils.create_n_rand_pts(100) | ||
temp1=average_nearest_neighbor_distance(temp) | ||
mean_nn_dist.append(temp1); | ||
|
||
return mean_nn_dist | ||
|
||
def p_perms_marks(p=99,n=100,marks=None): | ||
marks=['mercury', 'venus', 'earth', 'mars'] | ||
mean_nn_dist = [] | ||
for i in range(p): | ||
temp=utils.create_marked_rand_pts(100,marks) | ||
#print(temp.) | ||
temp1=average_nearest_neighbor_distance_marks(temp,marks) | ||
mean_nn_dist.append(temp1) | ||
|
||
return mean_nn_dist | ||
|
||
def monte_carlo_critical_bound_check(lb,ub,obs): | ||
return obs<lb or obs>ub | ||
|
||
def critical_pts(distances): | ||
return min(distances), max(distances) | ||
|
||
def minimum_bounding_rectangle(points): | ||
xmin=points[1][0] | ||
ymin=points[1][1] | ||
xmax=points[1][0] | ||
ymax=points[1][1] | ||
|
||
for i in points: | ||
curr_x=i[0] | ||
curr_y=i[1] | ||
if curr_x < xmin: | ||
xmin= curr_x | ||
elif curr_x > xmax: | ||
xmax= curr_x | ||
|
||
if curr_y < ymin: | ||
ymin= curr_y | ||
elif curr_y > ymax: | ||
ymax= curr_y | ||
mbr = [xmin,ymin,xmax,ymax] | ||
|
||
return mbr | ||
|
||
def find_largest_city(gj): | ||
maximum=0; | ||
features=gj['features'] | ||
|
||
for i in features: | ||
if (i['properties']['pop_max']>maximum): | ||
maximum=i['properties']['pop_max'] | ||
city=i['properties']['nameascii'] | ||
return city, maximum | ||
|
||
|
||
def write_your_own(gj): | ||
features=gj['features'] | ||
count = 0 | ||
for i in features: | ||
if(' ' in i['properties']['name']): | ||
count= count+1 | ||
|
||
return count | ||
|
||
def mean_center(points): | ||
x_tot=0 | ||
y_tot=0 | ||
|
||
for i in points: | ||
x_tot+=i[0] | ||
y_tot+=i[1] | ||
|
||
x = x_tot/len(points) | ||
y = y_tot/len(points) | ||
|
||
return x, y | ||
|
||
def average_nearest_neighbor_distance_marks(points,mark=None): | ||
mean_d = 0 | ||
for i in range(len(points)): | ||
dist_nearest=1e9 | ||
for j in range(len(points)): | ||
temp_p1 = (points[i].x, points[i].y) | ||
temp_p2 = (points[j].x, points[j].y) | ||
dist = utils.euclidean_distance(temp_p1, temp_p2) | ||
if temp_p1 == temp_p2: | ||
continue | ||
elif dist < dist_nearest: | ||
dist_nearest = dist; | ||
mean_d += dist_nearest; | ||
mean_d=mean_d/(len(points)) | ||
return mean_d | ||
|
||
def average_nearest_neighbor_distance(points): | ||
mean_d = 0 | ||
for i in points: | ||
dist_nearest=1e9 | ||
for j in points: | ||
dist = utils.euclidean_distance(i, j) | ||
if i==j: | ||
continue | ||
elif dist < dist_nearest: | ||
dist_nearest = dist; | ||
mean_d += dist_nearest; | ||
mean_d=mean_d/(len(points)) | ||
return mean_d |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,101 @@ | ||
import random | ||
import unittest | ||
|
||
import analytics | ||
import utils | ||
from point_pattern import PointPattern | ||
from point import Point | ||
class TestFunctionalPointPattern(unittest.TestCase): | ||
|
||
def setUp(self): | ||
self.marks=[] | ||
self.marks.append('r') | ||
self.marks.append('b') | ||
self.pattern=PointPattern() | ||
self.pattern.add_pt(Point(1,1,'r')) | ||
self.pattern.add_pt(Point(1,1,'r')) | ||
self.pattern.add_pt(Point(1,1,'r')) | ||
self.pattern.add_pt(Point(1,1,'r')) | ||
self.pattern.add_pt(Point(1,1,'r')) | ||
self.pattern.add_pt(Point(1,1,'r')) | ||
self.pattern.add_pt(Point(1,1,'r')) | ||
self.pattern.add_pt(Point(1,1,'r')) | ||
|
||
|
||
|
||
self.pattern.add_pt(Point(1,2,'b')) | ||
self.pattern.add_pt(Point(1,3,'b')) | ||
self.pattern.add_pt(Point(1,4,'b')) | ||
|
||
def test_num_coincident(self): | ||
self.assertEqual(self.pattern.number_coincident_points(),7) | ||
|
||
def test_list_mark(self): | ||
self.assertEquals(self.point_pattern.list_marks(),self.marks) | ||
|
||
def test_point_pattern(self): | ||
""" | ||
This test checks that the code can compute an observed mean | ||
nearest neighbor distance and then use Monte Carlo simulation to | ||
generate some number of permutations. A permutation is the mean | ||
nearest neighbor distance computed using a random realization of | ||
the point process. | ||
""" | ||
random.seed(3673673) # Reset the random number generator using system time | ||
# I do not know where you have moved avarege_nearest_neighbor_distance, so update the point_pattern module | ||
observed_avg = analytics.average_nearest_neighbor_distance(self.points) | ||
self.assertAlmostEqual(0.037507819095864134, observed_avg, 3) | ||
|
||
# Again, update the point_pattern module name for where you have placed the point_pattern module | ||
# Also update the create_random function name for whatever you named the function to generate | ||
# random points | ||
rand_points = utils.create_n_rand_pts(100) | ||
self.assertEqual(100, len(rand_points)) | ||
|
||
# As above, update the module and function name. | ||
permutations = analytics.p_perms(99) | ||
self.assertEqual(len(permutations), 99) | ||
self.assertNotEqual(permutations[0], permutations[1]) | ||
|
||
# As above, update the module and function name. | ||
lower, upper = utils.critical_pts(permutations) | ||
self.assertTrue(lower > 0.03) | ||
self.assertTrue(upper < 0.07) | ||
self.assertTrue(observed_avg < lower or observed_avg > upper) | ||
|
||
# As above, update the module and function name. | ||
significant = analytics.monte_carlo_critical_bound_check(lower, upper, 0) | ||
self.assertTrue(significant) | ||
|
||
self.assertTrue(True) | ||
|
||
def test_marks(self): | ||
random.seed(942323) # Reset the random number generator using system time | ||
# I do not know where you have moved avarege_nearest_neighbor_distance, so update the point_pattern module | ||
observed_avg = analytics.average_nearest_neighbor_distance(self.points) | ||
self.assertAlmostEqual(0.037507819095864134, observed_avg, 3) | ||
|
||
# Again, update the point_pattern module name for where you have placed the point_pattern module | ||
# Also update the create_random function name for whatever you named the function to generate | ||
# random points | ||
rand_points = utils.create_marked_rand_pts(100,self.marks) | ||
self.assertEqual(100, len(rand_points)) | ||
|
||
# As above, update the module and function name. | ||
permutations = analytics.p_perms_marks(99,self.marks) | ||
self.assertEqual(len(permutations), 99) | ||
#print(permutations) | ||
self.assertNotEqual(permutations[0], permutations[1]) | ||
|
||
# As above, update the module and function name. | ||
lower, upper = utils.critical_pts(permutations) | ||
self.assertTrue(lower > 0.03) | ||
self.assertTrue(upper < 0.07) | ||
self.assertTrue(observed_avg < lower or observed_avg > upper) | ||
|
||
# As above, update the module and function name. | ||
significant = analytics.monte_carlo_critical_bound_check(lower, upper, 0) | ||
self.assertTrue(significant) | ||
|
||
self.assertTrue(True) | ||
|
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,152 @@ | ||
import math | ||
from math import sqrt | ||
import utils | ||
|
||
class Point(): | ||
def __init__(self, x=0, y=0, mark=[]): | ||
self.x = x | ||
self.y = y | ||
self.magnitude = euclidean_distance((self.x,self.y), (0,0)) | ||
self.mark = mark | ||
def __add__(self, val): | ||
return Point(self.x + val, self.y + val) | ||
|
||
def __radd__(self, val): | ||
return Point(self.x + val, self.y + val) | ||
|
||
def __mul__(self,val): | ||
return Point(self.x*val, self.y*val) | ||
def __rmul__(self, val): | ||
return Point(self.x*val, self.y*val) | ||
|
||
def __neg__(self): | ||
return Point(-self.x, -self.y) | ||
|
||
def check_if_coincident(self,secondPoint): | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Would it be possible to utilize a magic method for this? There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Thanks for the suggestion, I realized just now that it would be easy to use eq() to check coincidence. |
||
return utils.check_coincident((self.x,self.y),secondPoint) | ||
|
||
def shift_point(self, x_shift, y_shift): | ||
(self.x,self.y)=utils.shift_point((self.x,self.y),x_shift,y_shift) | ||
return Point(self.x,self.y) | ||
|
||
def find_largest_city(gj): | ||
maximum=0; | ||
features=gj['features'] | ||
|
||
for i in features: | ||
if (i['properties']['pop_max']>maximum): | ||
maximum=i['properties']['pop_max'] | ||
city=i['properties']['nameascii'] | ||
return city, maximum | ||
|
||
def write_your_own(gj): | ||
#Calculate the number of citues with two-word names | ||
features=gj['features'] | ||
count = 0 | ||
for i in features: | ||
if(' ' in i['properties']['name']): | ||
count= count+1 | ||
|
||
return count | ||
|
||
def mean_center(points): | ||
x_tot=0 | ||
y_tot=0 | ||
|
||
for i in points: | ||
x_tot+=i[0] | ||
y_tot+=i[1] | ||
|
||
x = x_tot/len(points) | ||
y = y_tot/len(points) | ||
|
||
return x, y | ||
|
||
def average_nearest_neighbor_distance(points,mark=None): | ||
mean_d = 0 | ||
|
||
if(mark==None): | ||
for i in range(len(points)): | ||
dist_nearest=math.inf | ||
for j in range(len(points)): | ||
temp_p1 = (points[i].x, points[i].y) | ||
temp_p2 = (points[j].x, points[j].y) | ||
dist = utils.euclidean_distance(temp_p1, temp_p2) | ||
if temp_p1 == temp_p2: | ||
continue | ||
elif dist < dist_nearest: | ||
dist_nearest = dist; | ||
mean_d += dist_nearest; | ||
mean_d=mean_d/(len(points)) | ||
else: | ||
for i in range(len(points)): | ||
dist_nearest=math.inf | ||
for j in range(len(points)): | ||
dist = utils.euclidean_distance((points[i].x, points[i].y), (points[j].x,points[j].y)) | ||
if temp_p1 == temp_p2: | ||
continue | ||
elif dist < dist_nearest and temp_p1==temp_p2: | ||
dist_nearest = dist; | ||
mean_d += dist_nearest; | ||
mean_d=mean_d/(len(points)) | ||
|
||
return mean_d | ||
|
||
|
||
def minimum_bounding_rectangle(points): | ||
#set initial params | ||
xmin=points[1][0] | ||
ymin=points[1][1] | ||
xmax=points[1][0] | ||
ymax=points[1][1] | ||
|
||
for i in points: | ||
curr_x=i[0] | ||
curr_y=i[1] | ||
if curr_x < xmin: | ||
xmin= curr_x | ||
elif curr_x > xmax: | ||
xmax= curr_x | ||
|
||
if curr_y < ymin: | ||
ymin= curr_y | ||
elif curr_y > ymax: | ||
ymax= curr_y | ||
mbr = [xmin,ymin,xmax,ymax] | ||
|
||
return mbr | ||
|
||
def mbr_area(mbr): | ||
return (mbr[3]-mbr[1])*(mbr[2]-mbr[0]) | ||
|
||
def expected_distance(area, n): | ||
return 0.5*(sqrt(area/n)) | ||
|
||
def manhattan_distance(a, b): | ||
distance = abs(a[0] - b[0]) + abs(a[1] - b[1]) | ||
return distance | ||
|
||
def euclidean_distance(a, b): | ||
distance = sqrt((a[0] - b[0])**2 + (a[1] - b[1])**2) | ||
return distance | ||
|
||
def shift_point(point, x_shift, y_shift): | ||
x = point | ||
y = gety(point) | ||
|
||
x += x_shift | ||
y += y_shift | ||
|
||
return x, y | ||
|
||
def check_coincident(a, b): | ||
return a == b | ||
|
||
def check_in(point, point_list): | ||
return point in point_list | ||
|
||
def getx(point): | ||
return point[0] | ||
|
||
def gety(point): | ||
return point[1] |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Nice inclusion.