Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Rebase on the current master #473

Merged
merged 9 commits into from
May 16, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view

Large diffs are not rendered by default.

Large diffs are not rendered by default.

Large diffs are not rendered by default.

Original file line number Diff line number Diff line change
@@ -0,0 +1,27 @@
# Copyright 2021 Google LLC

# Licensed under the Apache License, Version 2.0 (the "License"); you may not
# use this file except in compliance with the License. You may obtain a copy of
# the License at

# https://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS"
# BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
# express or implied. See the License for the specific language governing
# permissions and limitations under the License.
"""Extract BQ dataset function."""

# TODO 3: Import necessary modules


# TODO 3: add component decorator.
# Use "gcr.io/ml-pipeline/google-cloud-pipeline-components:2.8.0" for base image
def extract_bq_op(
# TODO 3: Add inputs
):
# pylint: disable=import-outside-toplevel

# TODO 3: Define function
pass
Original file line number Diff line number Diff line change
@@ -0,0 +1,158 @@
# Copyright 2021 Google LLC

# Licensed under the Apache License, Version 2.0 (the "License"); you may not
# use this file except in compliance with the License. You may obtain a copy of
# the License at

# https://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS"
# BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
# express or implied. See the License for the specific language governing
# permissions and limitations under the License.

"""Kubeflow Covertype Pipeline."""
import os

from google.cloud.aiplatform import hyperparameter_tuning as hpt
from google_cloud_pipeline_components.types import artifact_types

# TODO 2: Import a predefined componet for Batch Prediction
# TODO 3: Import a predefined componet for BigQuery query job
from google_cloud_pipeline_components.v1.custom_job import CustomTrainingJobOp
from google_cloud_pipeline_components.v1.endpoint import (
EndpointCreateOp,
ModelDeployOp,
)
from google_cloud_pipeline_components.v1.hyperparameter_tuning_job import (
HyperparameterTuningJobRunOp,
serialize_metrics,
serialize_parameters,
)
from google_cloud_pipeline_components.v1.model import ModelUploadOp
from kfp import dsl
from retrieve_best_hptune_component import retrieve_best_hptune_result

# TODO 3: Import extract bq_op

PIPELINE_ROOT = os.getenv("PIPELINE_ROOT")
PROJECT_ID = os.getenv("PROJECT_ID")
REGION = os.getenv("REGION")

TRAINING_CONTAINER_IMAGE_URI = os.getenv("TRAINING_CONTAINER_IMAGE_URI")
SERVING_CONTAINER_IMAGE_URI = os.getenv("SERVING_CONTAINER_IMAGE_URI")
SERVING_MACHINE_TYPE = os.getenv("SERVING_MACHINE_TYPE", "n1-standard-16")

TRAINING_FILE_PATH = os.getenv("TRAINING_FILE_PATH")
VALIDATION_FILE_PATH = os.getenv("VALIDATION_FILE_PATH")

MAX_TRIAL_COUNT = int(os.getenv("MAX_TRIAL_COUNT", "5"))
PARALLEL_TRIAL_COUNT = int(os.getenv("PARALLEL_TRIAL_COUNT", "5"))
THRESHOLD = float(os.getenv("THRESHOLD", "0.6"))

PIPELINE_NAME = os.getenv("PIPELINE_NAME", "covertype")
BASE_OUTPUT_DIR = os.getenv("BASE_OUTPUT_DIR", PIPELINE_ROOT)
MODEL_DISPLAY_NAME = os.getenv("MODEL_DISPLAY_NAME", PIPELINE_NAME)
TIMESTAMP = os.getenv("TIMESTAMP")


@dsl.pipeline(
name=f"{PIPELINE_NAME}-kfp-pipeline",
description="Kubeflow pipeline that tunes, trains, and deploys on Vertex",
pipeline_root=PIPELINE_ROOT,
)
def create_pipeline():

# TODO 3: Insert Data tasks here

worker_pool_specs = [
{
"machine_spec": {
"machine_type": "n1-standard-4",
# "accelerator_type": "NVIDIA_TESLA_T4",
# "accelerator_count": 1,
},
"replica_count": 1,
"container_spec": {
"image_uri": TRAINING_CONTAINER_IMAGE_URI,
"args": [
f"--training_dataset_path={TRAINING_FILE_PATH}",
f"--validation_dataset_path={VALIDATION_FILE_PATH}",
"--hptune",
],
},
}
]

metric_spec = serialize_metrics({"accuracy": "maximize"})

parameter_spec = serialize_parameters(
{
"alpha": hpt.DoubleParameterSpec(
min=1.0e-4, max=1.0e-1, scale="log"
),
"max_iter": hpt.DiscreteParameterSpec(
values=[1, 2], scale="linear"
),
}
)

hp_tuning_task = HyperparameterTuningJobRunOp(
display_name=f"{PIPELINE_NAME}-kfp-tuning-job",
project=PROJECT_ID,
location=REGION,
worker_pool_specs=worker_pool_specs,
study_spec_metrics=metric_spec,
study_spec_parameters=parameter_spec,
max_trial_count=MAX_TRIAL_COUNT,
parallel_trial_count=PARALLEL_TRIAL_COUNT,
base_output_directory=PIPELINE_ROOT,
) # TODO 3: Define dependencies for preceding tasks.

best_retrieval_task = retrieve_best_hptune_result(
project=PROJECT_ID,
location=REGION,
gcp_resources=hp_tuning_task.outputs["gcp_resources"],
container_uri=TRAINING_CONTAINER_IMAGE_URI,
training_file_path=TRAINING_FILE_PATH,
validation_file_path=VALIDATION_FILE_PATH,
)

training_task = CustomTrainingJobOp(
project=PROJECT_ID,
location=REGION,
display_name=f"{PIPELINE_NAME}-kfp-training-job",
worker_pool_specs=best_retrieval_task.outputs["best_worker_pool_spec"],
base_output_directory=BASE_OUTPUT_DIR,
)

importer_spec = dsl.importer(
artifact_uri=f"{BASE_OUTPUT_DIR}/model",
artifact_class=artifact_types.UnmanagedContainerModel,
metadata={"containerSpec": {"imageUri": SERVING_CONTAINER_IMAGE_URI}},
)
importer_spec.after(training_task)

model_upload_task = ModelUploadOp(
project=PROJECT_ID,
display_name=f"{PIPELINE_NAME}-kfp-model-upload-job",
unmanaged_container_model=importer_spec.output,
)

endpoint_create_task = EndpointCreateOp(
project=PROJECT_ID,
display_name=f"{PIPELINE_NAME}-kfp-create-endpoint-job",
)
endpoint_create_task.after(model_upload_task)

model_deploy_op = ModelDeployOp( # pylint: disable=unused-variable
model=model_upload_task.outputs["model"],
endpoint=endpoint_create_task.outputs["endpoint"],
deployed_model_display_name=MODEL_DISPLAY_NAME,
dedicated_resources_machine_type=SERVING_MACHINE_TYPE,
dedicated_resources_min_replica_count=1,
dedicated_resources_max_replica_count=1,
)

# TODO 2: Add Batch Prediction task
Original file line number Diff line number Diff line change
@@ -0,0 +1,94 @@
# Copyright 2021 Google LLC

# Licensed under the Apache License, Version 2.0 (the "License"); you may not
# use this file except in compliance with the License. You may obtain a copy of
# the License at

# https://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS"
# BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
# express or implied. See the License for the specific language governing
# permissions and limitations under the License.
"""Lightweight component tuning function."""
from typing import Dict, List, NamedTuple

from kfp.dsl import component

# TODO 1: Import output and artifact object


@component(
base_image="python:3.8",
packages_to_install=["google-cloud-aiplatform"],
)
def retrieve_best_hptune_result(
project: str,
location: str,
gcp_resources: str,
container_uri: str,
training_file_path: str,
validation_file_path: str,
# TODO 1: Add metrics output object.
# Use `metrics_artifact` for the variable name.
) -> NamedTuple(
"Outputs",
[
("best_parameters", Dict),
("best_metrics", Dict),
("best_worker_pool_spec", List),
],
):

# pylint: disable=import-outside-toplevel
import json

from google.cloud import aiplatform

aiplatform.init(project=project, location=location)

# Retrieve the hyperparameter tuning job result
gcp_resources = json.loads(gcp_resources)
job_id = gcp_resources["resources"][0]["resourceUri"].split("/")[-1]
hp_job = aiplatform.HyperparameterTuningJob.get(job_id)

# Retrieve the best trial
metrics = [
trial.final_measurement.metrics[0].value for trial in hp_job.trials
]
goal = hp_job.to_dict()["studySpec"]["metrics"][0]["goal"]
goal_f = min if goal == "MINIMIZE" else max # MINIMIZE or MAXIMIZE
best_result = goal_f(metrics)
best_trial = hp_job.trials[metrics.index(best_result)]

best_parameters = {
param.parameter_id: param.value for param in best_trial.parameters
}

best_metrics = {
m.metric_id: m.value for m in best_trial.final_measurement.metrics
}

# Construct worker_pool_spec
best_worker_pool_spec = [
{
"machine_spec": {"machine_type": "n1-standard-4"},
"replica_count": 1,
"container_spec": {
"image_uri": container_uri,
"args": [
f"--training_dataset_path={training_file_path}",
f"--validation_dataset_path={validation_file_path}",
"--nohptune",
],
},
}
]

for k, v in best_parameters.items():
best_worker_pool_spec[0]["container_spec"]["args"].append(f"--{k}={v}")

# TODO 1: Add metrics reporting for Vertex AI Experiments

return best_parameters, best_metrics, best_worker_pool_spec
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
FROM us-docker.pkg.dev/vertex-ai/training/sklearn-cpu.1-0
RUN pip install -U fire cloudml-hypertune scikit-learn==1.2.2
WORKDIR /app
COPY train.py .

ENTRYPOINT ["python", "train.py"]
Original file line number Diff line number Diff line change
@@ -0,0 +1,100 @@
# Copyright 2021 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Covertype Classifier trainer script."""
import os
import pickle
import subprocess
import sys

import fire
import hypertune
import pandas as pd
from sklearn.compose import ColumnTransformer
from sklearn.linear_model import SGDClassifier
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import OneHotEncoder, StandardScaler

AIP_MODEL_DIR = os.environ["AIP_MODEL_DIR"]
MODEL_FILENAME = "model.pkl"


def train_evaluate(
training_dataset_path, validation_dataset_path, alpha, max_iter, hptune
):
"""Trains the Covertype Classifier model."""

df_train = pd.read_csv(training_dataset_path)
df_validation = pd.read_csv(validation_dataset_path)

if not hptune:
df_train = pd.concat([df_train, df_validation])

numeric_feature_indexes = slice(0, 10)
categorical_feature_indexes = slice(10, 12)

preprocessor = ColumnTransformer(
transformers=[
("num", StandardScaler(), numeric_feature_indexes),
("cat", OneHotEncoder(), categorical_feature_indexes),
]
)

pipeline = Pipeline(
[
("preprocessor", preprocessor),
("classifier", SGDClassifier(loss="log_loss")),
]
)

num_features_type_map = {
feature: "float64"
for feature in df_train.columns[numeric_feature_indexes]
}
df_train = df_train.astype(num_features_type_map)
df_validation = df_validation.astype(num_features_type_map)

print(f"Starting training: alpha={alpha}, max_iter={max_iter}")
# pylint: disable-next=invalid-name
X_train = df_train.drop("Cover_Type", axis=1)
y_train = df_train["Cover_Type"]

pipeline.set_params(
classifier__alpha=alpha, classifier__max_iter=int(max_iter)
)
pipeline.fit(X_train, y_train)

if hptune:
# pylint: disable-next=invalid-name
X_validation = df_validation.drop("Cover_Type", axis=1)
y_validation = df_validation["Cover_Type"]
accuracy = pipeline.score(X_validation, y_validation)
print(f"Model accuracy: {accuracy}")
# Log it with hypertune
hpt = hypertune.HyperTune()
hpt.report_hyperparameter_tuning_metric(
hyperparameter_metric_tag="accuracy", metric_value=accuracy
)

# Save the model
if not hptune:
with open(MODEL_FILENAME, "wb") as model_file:
pickle.dump(pipeline, model_file)
subprocess.check_call(
["gsutil", "cp", MODEL_FILENAME, AIP_MODEL_DIR], stderr=sys.stdout
)
print(f"Saved model in: {AIP_MODEL_DIR}")


if __name__ == "__main__":
fire.Fire(train_evaluate)
Loading