-
Notifications
You must be signed in to change notification settings - Fork 38
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
added example using field selection (#228)
- Loading branch information
Showing
1 changed file
with
212 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,212 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import random\n", | ||
"import numpy as np\n", | ||
"USE_H5PY=False\n", | ||
"if USE_H5PY:\n", | ||
" import h5py\n", | ||
" filepath = \"./compound.h5\"\n", | ||
"else:\n", | ||
" import h5pyd as h5py\n", | ||
" filepath = \"/home/test_user1/test/compound.h5\"" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# create a new domain/file\n", | ||
"f = h5py.File(filepath, \"w\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# create a numpy dtype with 260 Fields: \n", | ||
"# A0, A1, A2, ..., Z7, Z8, Z9\n", | ||
"fields = []\n", | ||
"for i in range(26):\n", | ||
" ch1 = chr(ord('A') + i)\n", | ||
" for j in range(10):\n", | ||
" ch2 = chr(ord('0') + j)\n", | ||
" fields.append((ch1+ch2, \"S6\"))\n", | ||
"dt = np.dtype(fields)\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"<HDF5 dataset \"dset\": shape (10000,), type \"|V1560\">" | ||
] | ||
}, | ||
"execution_count": 4, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"# create a dataset using the dtype\n", | ||
"NUM_ROWS = 10000\n", | ||
"dset = f.create_dataset(\"dset\", (NUM_ROWS,), dtype=dt)\n", | ||
"dset\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 5, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# write some values into the dataset\n", | ||
"arr = np.zeros((NUM_ROWS,), dtype=dt)\n", | ||
"for i in range(NUM_ROWS):\n", | ||
" row = arr[i]\n", | ||
" for name in dt.names:\n", | ||
" row[name] = f\"{i:03d}_{name}\".encode()\n", | ||
"dset[:] = arr[:]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 6, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"['C4', 'P6', 'V0', 'S8', 'P4', 'B5', 'L1', 'E7']" | ||
] | ||
}, | ||
"execution_count": 6, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"# get a random set of field names.\n", | ||
"# k controls the max number of names returned\n", | ||
"names = random.choices(dt.names, k=10)\n", | ||
"names = list(set(names))\n", | ||
"names" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 7, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"CPU times: user 27.1 ms, sys: 16.1 ms, total: 43.2 ms\n", | ||
"Wall time: 93.8 ms\n" | ||
] | ||
}, | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"array([(b'000_C4', b'000_P6', b'000_V0', b'000_S8', b'000_P4', b'000_B5', b'000_L1', b'000_E7'),\n", | ||
" (b'001_C4', b'001_P6', b'001_V0', b'001_S8', b'001_P4', b'001_B5', b'001_L1', b'001_E7'),\n", | ||
" (b'002_C4', b'002_P6', b'002_V0', b'002_S8', b'002_P4', b'002_B5', b'002_L1', b'002_E7'),\n", | ||
" ...,\n", | ||
" (b'9997_C', b'9997_P', b'9997_V', b'9997_S', b'9997_P', b'9997_B', b'9997_L', b'9997_E'),\n", | ||
" (b'9998_C', b'9998_P', b'9998_V', b'9998_S', b'9998_P', b'9998_B', b'9998_L', b'9998_E'),\n", | ||
" (b'9999_C', b'9999_P', b'9999_V', b'9999_S', b'9999_P', b'9999_B', b'9999_L', b'9999_E')],\n", | ||
" dtype={'names': ['C4', 'P6', 'V0', 'S8', 'P4', 'B5', 'L1', 'E7'], 'formats': ['S6', 'S6', 'S6', 'S6', 'S6', 'S6', 'S6', 'S6'], 'offsets': [144, 936, 1260, 1128, 924, 90, 666, 282], 'itemsize': 1560})" | ||
] | ||
}, | ||
"execution_count": 7, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"# Get the dataset values and then return the field selection\n", | ||
"%time dset[:][names]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 8, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"CPU times: user 3.92 ms, sys: 0 ns, total: 3.92 ms\n", | ||
"Wall time: 20.7 ms\n" | ||
] | ||
}, | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"array([(b'000_C4', b'000_P6', b'000_V0', b'000_S8', b'000_P4', b'000_B5', b'000_L1', b'000_E7'),\n", | ||
" (b'001_C4', b'001_P6', b'001_V0', b'001_S8', b'001_P4', b'001_B5', b'001_L1', b'001_E7'),\n", | ||
" (b'002_C4', b'002_P6', b'002_V0', b'002_S8', b'002_P4', b'002_B5', b'002_L1', b'002_E7'),\n", | ||
" ...,\n", | ||
" (b'9997_C', b'9997_P', b'9997_V', b'9997_S', b'9997_P', b'9997_B', b'9997_L', b'9997_E'),\n", | ||
" (b'9998_C', b'9998_P', b'9998_V', b'9998_S', b'9998_P', b'9998_B', b'9998_L', b'9998_E'),\n", | ||
" (b'9999_C', b'9999_P', b'9999_V', b'9999_S', b'9999_P', b'9999_B', b'9999_L', b'9999_E')],\n", | ||
" dtype=[('C4', 'S6'), ('P6', 'S6'), ('V0', 'S6'), ('S8', 'S6'), ('P4', 'S6'), ('B5', 'S6'), ('L1', 'S6'), ('E7', 'S6')])" | ||
] | ||
}, | ||
"execution_count": 8, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"# Have HSDS (or HDF5 lib) return just the values for the given set of field names\n", | ||
"# Will return same values as above cell, but should be faster as less data needs \n", | ||
"# to be transferred \n", | ||
"%time dset.fields(names)[:]" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "hs", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.11.9" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |