forked from lyphix/High_Level_Control
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Main.m
191 lines (165 loc) · 5.06 KB
/
Main.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
%% Clean
clc;
close all;
%% Check List:
% 1.Power on Robot Dog
% 2.Connect Robot Dog Wifi: Unitree_Go393319A
% 3.Open Virtual Machine
% 4.Running /Desktop/unitree_matlab/build/udp_link press Enter to begin
% 5.Open Motive Check Broadcast and Network Interface
% 6.You are good for running
%% Robot Dog Network Parameters
% this IP is the vm ip
Robot_Dog_IP = '192.168.12.184';
Robot_Dog_Port = 1145;
%% Robot Dog Command Initialized
Control_Command = zeros(1,11,'single');
%velocity walking
Control_Command(1)=2;
%% Feedback Control Parameters
K_P = 0.5; % Porportional constant on velocity action
K_I = 1; % Integral
K_D = 1;
% constant on velocity action
K_Y = pi/180; % Proportional constant on angle action
%% Control Setting
% Mode 1: Dog will keep face to yaw_set and move to target point.
% Mode 2: Dog will turn to target point and walk to it.
Control_Mode=1;
Target_Point=[0.3 -0.2]; %[x,z]
yaw_set = -1;
% [0,360)
% -1: Disable yaw control
% wall wall wall wall wall
% 0
% ^ z
% |
% |
% 90 x <----O 270
%
% 180
%
% wall computer wall
%% Instantiate client object to run Motive API commands
% Check list:
% 1.Broadcast Frame Date
% 2.Network Interface: Local Loopback
% https://optitrack.com/software/natnet-sdk/
% Create Motive client object
dllPath = fullfile('d:','StDroneControl','NatNetSDK','lib','x64','NatNetML.dll');
assemblyInfo = NET.addAssembly(dllPath); % Add API function calls
theClient = NatNetML.NatNetClientML(0);
% Create connection to localhost, data is now being streamed through client object
HostIP = '127.0.0.1';
theClient.Initialize(HostIP, HostIP);
Dog_ID = 1; % Rigid body ID of the drone from Motive
%% figure for movtion track
fig = figure();
ax = axes('Parent',fig);
arrow_length=0.2;
%% Robot dog command
% Control_Command()
%
% +(11) +(9) -(11)
% |
% +(10) dog -(10)
% |
% -(9)
%
%% Motive coordiate frame
% wall wall wall wall wall
% ^ z
% |
% |
% x <----O y(pointing up)
% wall computer wall
%% Loop
while true
% get position from camera
[Dog_Pos] = Get_Dog_Postion(theClient, Dog_ID); %[time, z, x, yaw]
%% Feedback control
% Calculate Distance
Point_Dog = [Dog_Pos(2) Dog_Pos(3)]; %[x,z]
Vector_PD_TP = Target_Point-Point_Dog;
Norm_Vector = norm(Vector_PD_TP);
Rotation_matrix = [cosd(Dog_Pos(4)), -sind(Dog_Pos(4)) ; sind(Dog_Pos(4)),cosd(Dog_Pos(4)) ];
%% Enable Control
if Norm_Vector > 0.1 %Distance > 0.1M
%% Mode 1
if Control_Mode == 1
if yaw_set == -1
error_yaw_command=0;
elseif yaw_set >=0 && yaw_set<360
error_yaw = yaw_set-Dog_Pos(4);
if abs(error_yaw)>180
error_yaw_command=(360+error_yaw);
else
error_yaw_command=error_yaw;
end
end
Vector_rotated = Rotation_matrix*Vector_PD_TP';
Control_Command(11) = error_yaw_command*K_Y;
Control_Command(10) = Vector_rotated(1)*K_P; %x
Control_Command(9) = Vector_rotated(2)*K_P; %z
end
% %% Mode2
% if Control_Mode == 2
% Point_Dog = [Dog_Pos(2) Dog_Pos(3)];
% Vector_PD_TP = Target_Point-Point_Dog;
% Norm_Vector = norm(Vector_PD_TP);
% if(Norm_Vector>0.5)
% angle_r = atan2(-Vector_PD_TP(1),Vector_PD_TP(2));
% yaw_set = rad2deg(angle_r);
% if yaw_set >= -90
% yaw_set = yaw_set+90;
% else
% yaw_set = 360+(yaw_set+90);
% end
% end
%
% error_yaw = yaw_set-Dog_Pos(4);
% if abs(error_yaw)>180
% error_yaw_command=(360+error_yaw);
% else
% error_yaw_command=error_yaw;
% end
% error_Z = Target_Point(1)-Dog_Pos(2);
%
% error_Z_rotated = error_Z*cosd(Dog_Pos(4))-error_X*sind(Dog_Pos(4));
%
%
% Control_Command(11) = error_yaw_command*K_Y;
% Control_Command(10) = error_Z_rotated*K_P;
% Control_Command(10) = 0;
%
% end
else
Control_Command(11) = 0;
Control_Command(9) = 0;
Control_Command(10) = 0;
end
disp(Control_Command);
Robot_Dog(Robot_Dog_IP,Robot_Dog_Port,Control_Command);
%% draw
circle_center =[0,0];
circle_radius =1.65;
circle_theta = linspace(0,2*pi,100);
circle_x=circle_center(1)+circle_radius*cos(circle_theta);
circle_y=circle_center(2)+circle_radius*sin(circle_theta);
plot(ax,circle_x,circle_y,'b-');
xlabel('X')
ylabel('Z')
hold on;
plot(ax,Target_Point(1),Target_Point(2),'x');
ax.DataAspectRatio=[1 1 1];
dy=arrow_length*cosd(Dog_Pos(4));
dx=arrow_length*sind(Dog_Pos(4));
quiver(Dog_Pos(2),Dog_Pos(3),dx,dy,'r','LineWidth',0.2,'MaxHeadSize',2);
set(gca,'XDir','reverse');
xlim(ax,[-3,3]);
ylim(ax,[-2,2]);
hold off;
drawnow;
%% 50Hz
pause(0.02);
end