-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmag_field_of_line_and_helix.nb
3063 lines (2972 loc) · 124 KB
/
mag_field_of_line_and_helix.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.2' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 126602, 3055]
NotebookOptionsPosition[ 119724, 2930]
NotebookOutlinePosition[ 120100, 2946]
CellTagsIndexPosition[ 120057, 2943]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[TextData[{
"I want to analytically solve for the vector magnetic feild (as a function \
of arbitrary position) for both a helix and a finite line\n",
Cell[BoxData[
FormBox[
OverscriptBox[
RowBox[{" ", "dB"}], "\[RightVector]"], TraditionalForm]],
FormatType->"TraditionalForm",ExpressionUUID->
"10188b08-ebb9-4a20-b74c-fe95dcac6103"],
" = ",
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{
FractionBox[
RowBox[{
SubscriptBox["\[Mu]", "0"], " ", "I"}],
RowBox[{"4", " ", "\[Pi]"}]], " ",
FractionBox[
RowBox[{
OverscriptBox["dL", "\[RightVector]"], " ", "\[Cross]",
OverscriptBox["R", "\[RightVector]"]}],
RowBox[{"|",
OverscriptBox["R", "\[RightVector]"],
SuperscriptBox["|", "3"]}]]}], "=",
RowBox[{
FractionBox[
RowBox[{
SubscriptBox["\[Mu]", "0"], " ", "I"}],
RowBox[{"4", " ", "\[Pi]"}]], " ",
FractionBox[
RowBox[{
OverscriptBox["dL", "\[RightVector]"], " ", " ", "\[Cross]",
OverscriptBox["R", "^"]}],
RowBox[{"|",
OverscriptBox["R", "\[RightVector]"],
SuperscriptBox["|", "3"]}]], " "}]}], TraditionalForm]],
FormatType->"TraditionalForm",ExpressionUUID->
"a13b650b-9bb3-4f8a-b776-288aba3ea02a"],
"\nthen ",
Cell[BoxData[
FormBox[
OverscriptBox["B", "\[RightVector]"], TraditionalForm]],
FormatType->"TraditionalForm",ExpressionUUID->
"7f21ea80-b050-4789-a264-50c1dcafd5bf"],
"(P)=\[Integral]",
Cell[BoxData[
FormBox[
OverscriptBox[
RowBox[{" ", "dB"}], "\[RightVector]"], TraditionalForm]],
FormatType->"TraditionalForm",ExpressionUUID->
"d3d8572c-df3e-4f7c-981c-75705f937f5d"],
"(P)\nwhere \nI is the current\nP is the observation location\n",
Cell[BoxData[
FormBox[
OverscriptBox["R", "\[RightVector]"], TraditionalForm]],ExpressionUUID->
"e5974739-0906-41e7-bba5-7cf6480a9c6b"],
" is the displacement vector from dL to P\n",
Cell[BoxData[
FormBox[
OverscriptBox["R", "^"], TraditionalForm]],ExpressionUUID->
"1d1eff51-2ec9-470c-ad7b-5cf2eb2ef450"],
" is the unit vector of ",
Cell[BoxData[
FormBox[
OverscriptBox["R", "\[RightVector]"], TraditionalForm]],ExpressionUUID->
"7b26ef59-bb49-475b-a586-cfc1a1551a3d"],
"\ndL is the infinitesimal wire element\n"
}], "Text",
CellChangeTimes->{{3.758679577187789*^9, 3.758679652110655*^9}, {
3.758679683613412*^9, 3.7586796870372553`*^9}, {3.758679799101773*^9,
3.7586800993588395`*^9}, {3.7586801958867207`*^9,
3.7586803614013987`*^9}},ExpressionUUID->"a46a05f2-94f4-45a9-ba95-\
cd37108f55fb"],
Cell["\<\
We will set up the mechanisms by which any parametrized curve can be \
calculated\
\>", "Text",
CellChangeTimes->{{3.758680485557386*^9,
3.758680511349415*^9}},ExpressionUUID->"1e8ed41c-cc33-4c2d-9ac8-\
8b52d6c48284"],
Cell[CellGroupData[{
Cell["Finite Wire", "Section",
CellChangeTimes->{{3.7586804773812504`*^9, 3.758680479597324*^9}, {
3.7586815690853677`*^9,
3.7586815721900654`*^9}},ExpressionUUID->"a86a69db-beb7-438c-ba32-\
60d23e184ef6"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"LineCyl", "[", "t_", "]"}], ":=",
RowBox[{"{",
RowBox[{"0", ",", "0", ",", "t"}], "}"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"CylToCart", "[", "r\[Theta]z_", "]"}], ":=",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"r\[Theta]z", "[",
RowBox[{"[", "1", "]"}], "]"}], " ",
RowBox[{"Cos", "[",
RowBox[{"r\[Theta]z", "[",
RowBox[{"[", "2", "]"}], "]"}], " ", "]"}]}], ",",
RowBox[{
RowBox[{"r\[Theta]z", "[",
RowBox[{"[", "1", "]"}], "]"}], " ", " ",
RowBox[{"Sin", "[",
RowBox[{"r\[Theta]z", "[",
RowBox[{"[", "2", "]"}], "]"}], " ", "]"}]}], ",",
RowBox[{"r\[Theta]z", "[",
RowBox[{"[", "3", "]"}], "]"}]}], " ", "}"}]}], "\[IndentingNewLine]",
RowBox[{"LineCart", "=",
RowBox[{"CylToCart", " ", "[",
RowBox[{"LineCyl", "[", "t", "]"}], "]"}]}], "\[IndentingNewLine]",
RowBox[{"dLineCart", "=",
RowBox[{"D", "[",
RowBox[{"LineCart", ",", "t"}], "]"}]}], "\[IndentingNewLine]"}], "Input",
CellChangeTimes->{{3.75868053127114*^9, 3.7586805418059688`*^9}, {
3.7586806708434305`*^9, 3.7586807528780575`*^9}, {3.758680789613821*^9,
3.758680798149994*^9}, 3.758681100469981*^9, {3.7586811662540946`*^9,
3.7586812139415708`*^9}, 3.7586812590619116`*^9, {3.758681385757614*^9,
3.758681392805766*^9}, {3.758681424349414*^9, 3.758681432965373*^9}, {
3.758681532605919*^9, 3.7586815338535833`*^9}, {3.75868165665427*^9,
3.7586816876543713`*^9}, {3.758777428346053*^9, 3.7587774290202503`*^9},
3.760771637281231*^9},ExpressionUUID->"abdd6483-6741-4e50-9683-\
526dab8b2e58"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"0", ",", "0", ",", "t"}], "}"}]], "Output",
CellChangeTimes->{3.7587774299866657`*^9,
3.7607716472410817`*^9},ExpressionUUID->"d3c99d5f-06a9-4b0a-9d80-\
6b5b17a57c97"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"0", ",", "0", ",", "1"}], "}"}]], "Output",
CellChangeTimes->{3.7587774299866657`*^9,
3.760771647246078*^9},ExpressionUUID->"a46e16cf-2511-43f9-b455-\
d641feea17a7"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"Pvec", "=",
RowBox[{"{",
RowBox[{"px", ",", "py", ",", "pz"}], "}"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Rvec", "=",
RowBox[{"(",
RowBox[{"Pvec", "-", "LineCart"}], ")"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{"assum", "=",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{"px", ",", "py", ",", "pz", ",", "t", ",", "Len"}], "}"}],
"\[Element]", "Reals"}], ",",
RowBox[{
RowBox[{"{", "Len", "}"}], ">", "0"}]}], "}"}]}], "\[IndentingNewLine]",
RowBox[{"dB", "=",
FractionBox[
RowBox[{"Cross", "[",
RowBox[{"dLineCart", ",", "Rvec"}], "]"}],
SuperscriptBox[
RowBox[{"Norm", "[", "Rvec", "]"}], "3"]]}]}], "Input",
CellChangeTimes->{{3.7586817474240437`*^9, 3.7586818865814214`*^9}, {
3.7586819329180183`*^9, 3.7586819629985776`*^9}, {3.758682003165716*^9,
3.7586820679335165`*^9}, {3.7586821137978687`*^9, 3.75868212470969*^9}, {
3.758682261333887*^9, 3.7586822616141376`*^9}, {3.7586844188530693`*^9,
3.758684426069771*^9}, {3.758684497660349*^9, 3.758684497846851*^9}, {
3.7586846153890333`*^9, 3.758684615581518*^9}, {3.7607718586255484`*^9,
3.7607719425567207`*^9}, 3.760771997553759*^9, {3.76077220016864*^9,
3.760772200424483*^9}},ExpressionUUID->"2434e759-c4fc-4853-a303-\
9d8ec03caf2a"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"px", "|", "py", "|", "pz", "|", "t", "|", "Len"}], ")"}],
"\[Element]",
TemplateBox[{},
"Reals"]}], ",",
RowBox[{
RowBox[{"{", "Len", "}"}], ">", "0"}]}], "}"}]], "Output",
CellChangeTimes->{{3.7586819363538303`*^9, 3.758681963881217*^9},
3.7586821325606947`*^9, 3.758682262609476*^9, 3.7586846258091683`*^9,
3.7587774348845677`*^9, 3.760771647397984*^9, 3.7607718846684666`*^9,
3.760771944529501*^9, 3.7607720335855336`*^9, 3.7607721497537723`*^9,
3.7607722108130693`*^9},ExpressionUUID->"80e391c0-2636-4f51-bec7-\
ed3ebaffc54c"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox["py",
SuperscriptBox[
RowBox[{"(",
RowBox[{
SuperscriptBox[
RowBox[{"Abs", "[", "px", "]"}], "2"], "+",
SuperscriptBox[
RowBox[{"Abs", "[", "py", "]"}], "2"], "+",
SuperscriptBox[
RowBox[{"Abs", "[",
RowBox[{"pz", "-", "t"}], "]"}], "2"]}], ")"}],
RowBox[{"3", "/", "2"}]]]}], ",",
FractionBox["px",
SuperscriptBox[
RowBox[{"(",
RowBox[{
SuperscriptBox[
RowBox[{"Abs", "[", "px", "]"}], "2"], "+",
SuperscriptBox[
RowBox[{"Abs", "[", "py", "]"}], "2"], "+",
SuperscriptBox[
RowBox[{"Abs", "[",
RowBox[{"pz", "-", "t"}], "]"}], "2"]}], ")"}],
RowBox[{"3", "/", "2"}]]], ",", "0"}], "}"}]], "Output",
CellChangeTimes->{{3.7586819363538303`*^9, 3.758681963881217*^9},
3.7586821325606947`*^9, 3.758682262609476*^9, 3.7586846258091683`*^9,
3.7587774348845677`*^9, 3.760771647397984*^9, 3.7607718846684666`*^9,
3.760771944529501*^9, 3.7607720335855336`*^9, 3.7607721497537723`*^9,
3.760772210823061*^9},ExpressionUUID->"f34c70f4-4a6c-4466-8404-\
6a36de7fa5df"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Bindef", "=",
RowBox[{"Integrate", "[",
RowBox[{"dB", ",", "t", ",",
RowBox[{"Assumptions", "\[Rule]", "assum"}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.758681972425369*^9, 3.758681978564951*^9}, {
3.7586821274942436`*^9, 3.7586821293582582`*^9}, {3.7586847602691083`*^9,
3.7586847618608513`*^9}},ExpressionUUID->"44114786-19b4-4807-9163-\
1da179bb5453"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"py", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "pz"}], "+", "t"}], ")"}]}],
RowBox[{
RowBox[{"(",
RowBox[{
SuperscriptBox["px", "2"], "+",
SuperscriptBox["py", "2"]}], ")"}], " ",
SqrtBox[
RowBox[{
SuperscriptBox["px", "2"], "+",
SuperscriptBox["py", "2"], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{"pz", "-", "t"}], ")"}], "2"]}]]}]]}], ",",
FractionBox[
RowBox[{"px", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "pz"}], "+", "t"}], ")"}]}],
RowBox[{
RowBox[{"(",
RowBox[{
SuperscriptBox["px", "2"], "+",
SuperscriptBox["py", "2"]}], ")"}], " ",
SqrtBox[
RowBox[{
SuperscriptBox["px", "2"], "+",
SuperscriptBox["py", "2"], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{"pz", "-", "t"}], ")"}], "2"]}]]}]], ",", "0"}],
"}"}]], "Output",
CellChangeTimes->{
3.75868197932791*^9, {3.7586821307894306`*^9, 3.758682134990197*^9},
3.758682265969491*^9, 3.758684431090345*^9, 3.7586845776110573`*^9,
3.758684628252634*^9, 3.7586847639223385`*^9, 3.758777438251564*^9,
3.760771647664819*^9,
3.7607719474786797`*^9},ExpressionUUID->"ff7e090f-02bc-49b3-9c14-\
f4305d2cdebd"]
}, Open ]],
Cell["Look for discontinuities in the antiderivative", "Text",
CellChangeTimes->{{3.760771792845168*^9, 3.7607718106032033`*^9},
3.7607719512343616`*^9},ExpressionUUID->"c0426246-dde8-4015-9224-\
740096fa1007"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"Bindef", "[",
RowBox[{"[", "1", "]"}], "]"}], "/.",
RowBox[{"{",
RowBox[{
RowBox[{"t", "\[Rule]", "x"}], ",",
RowBox[{"pz", "\[Rule]", "0"}], ",",
RowBox[{"px", "\[Rule]", "1"}], ",",
RowBox[{"py", "\[Rule]", "1"}]}], "}"}]}]], "Input",
CellChangeTimes->{{3.7607717705639277`*^9,
3.7607717827753873`*^9}},ExpressionUUID->"b4e79fb4-6911-4778-8993-\
cb86f9b58641"],
Cell[BoxData[
RowBox[{"-",
FractionBox["x",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"2", "+",
SuperscriptBox["x", "2"]}]]}]]}]], "Output",
CellChangeTimes->{
3.7607717431678443`*^9, {3.7607717761434836`*^9, 3.760771783234104*^9},
3.760772047889674*^9},ExpressionUUID->"ad4d8750-347d-4743-bcf6-\
6c4cbf8e0248"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"Bindef", "[",
RowBox[{"[", "1", "]"}], "]"}], "/.",
RowBox[{"{",
RowBox[{
RowBox[{"t", "\[Rule]", "x"}], ",",
RowBox[{"pz", "\[Rule]", "0"}], ",",
RowBox[{"px", "\[Rule]", "1"}], ",",
RowBox[{"py", "\[Rule]", "1"}]}], "}"}]}]], "Input",
CellChangeTimes->{{3.7607721057939177`*^9,
3.760772106461506*^9}},ExpressionUUID->"77689400-48d2-4dfb-8927-\
f05bd948ec21"],
Cell[BoxData[
RowBox[{"-",
FractionBox["x",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"2", "+",
SuperscriptBox["x", "2"]}]]}]]}]], "Output",
CellChangeTimes->{{3.7607721022141304`*^9,
3.760772107104109*^9}},ExpressionUUID->"c4b83219-4a5c-47a0-ada5-\
15bb4b594bc5"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
RowBox[{"Bindef", "[",
RowBox[{"[", "1", "]"}], "]"}], "/.",
RowBox[{"{",
RowBox[{
RowBox[{"t", "\[Rule]", "x"}], ",",
RowBox[{"pz", "\[Rule]", "0"}], ",",
RowBox[{"px", "\[Rule]", "2"}], ",",
RowBox[{"py", "\[Rule]", "2"}]}], "}"}]}], ",",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"-", "10"}], ",", "10"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.760771646910286*^9, 3.7607717339365454`*^9}, {
3.7607720680242414`*^9, 3.7607720687248096`*^9}, {3.760772109409686*^9,
3.7607721100412955`*^9}, {3.760772509822425*^9, 3.760772516966013*^9}, {
3.7607726028359876`*^9, 3.7607726464730415`*^9}, {3.760772969391593*^9,
3.760772985932379*^9}},ExpressionUUID->"38af97fd-662e-4e6c-9c73-\
b38bedd0d639"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwt13k01evXAHBkOJkdR6XIcCqczJWi9Dwy3kJKqWjQMSaViFKSmyFcZYp7
ke41XJnHaLh4ntM5zuxbmkwREVFJCBnyetf6/bHXXp+1915r7z+3Fv3CQR8x
ERERwXL8f74+7DSxtETFbtc8gxl8AgxdW/Wje4GKZeszKnyW7az4fubRTyrW
CavHK5etaR60eGGSim+PHz1/gEeAZ4lppL4hKr7+vXSwl0MAkmH7etxKxWL7
NPQmWAS4e8lzX1QOFQ9uljz7s5kAZaIhhSLbqdg53sQ/tpYAEj72pqontHHK
Kdr16bsEUO5oCcxP1cJDKnntz0IJcJCZ7aXH18Qebj8521wJcO2bZWDKgAbW
3hfRdEOXAI8vZwdU7V+P3S+aaL2YawXOaYc1f2Wp4emECZ1KRiuwz21ydviy
Fjcne9nZRrWCIk742xAPVXx74iCkmreCkzF3VZ4Xr8ZtIxKOEb1CEOm5olJG
eRX++c+sl9VVIah+bn/ntewq3DAw0ZpxRQg+7E46nyu5CmsYHlIdCRMCO3UV
I6M5FRx28LZLUogQyHdtqj7Yr4KJgoubWgKF4L7r3tqsKhWsdZaRtXRSCJBd
aoOOowoWWO37L2WPEIgYaCDrWApuRjkZIxJCELHK6mRsJAW/ZmWaMlcIwcwS
fZF9mYLxUoJhjqgQjL0s2rk3gILbHltZ2i0KQPcVw8cu+yl4yX02MX5KABpY
ljUnVCnYu8IssfGDAJw7frzgcoUy1giLfvO2SQC6/si6VfaGjAWLx5svnReA
Vy2a5Z7PyXj9NxO2RKAACJcevFDhkbFv3R6xjDMC0BzSoBrVSMZsxweKld4C
kO/xquxQARk7tCoe47sLQMBmuReLQWRcktGoU2onAPP8qDUusmR8Oqaqb05N
ANSk/Uum9ijhj5NyFhFMPjjZLEzS3qWEuTk9J50wH+QFmwS5bFPC08VXe9c1
8cGm7jmzch0lPPI2f6C6gQ+Mym+zvGSV8GHLp/89LeGDPc5171++UcTa8q57
9yXzwZm0Xyo1/opYL+F9rONRPji7jSbRraaAc2J+ddD6eSBY4smDMAUFvKGd
XOncwwNX39jvJYspYOtktPtCJw8khvok/zYsj39dUI4rauOB0vp/VB/XyOMH
K5wPfmXwwMi21YYZdvKYB6ZXdObxgJ+Z+JH9QXL4j2JsoXSKB7y29xYzmTLY
faroL0uCC3yLt7vZPZLB0x0uTzk8LghQTV3BK5XB3Pvmu5xbuCBo3vokkSqD
w95Uuro0ckEEKlHuPCWDr8UOXtIt5YK79qGRY/PS+GFUccbGWC5gH5E9pLpV
GpMcKed37uAC2hWLpfOFJGz+1LZCLo0DcI8zbSCThAvKLz1QT+IAN2uvw0cS
SFg3a9FZN44DbsonlYHzJJxnJJtmcJUDOgt7jijuIGH91gH3mdMcEN8WVV0j
kMIWW7JvRhtzwBCNc3pqQhIbvd799hiPDfJ6XFnhVhI4sjL+R9unFmA6aDr3
eqsEnus52/ChvwWwRpWMjXUlcJyNXPHXrhYwNPM8Z0heAoc3L0hPCFsAjewY
4vpOHG+j+zo9rG4BtXY22gaXxfGp1/SqtZeX56u2RvWVr8D/dXUqOC+xwPDv
Krvs14jhwrP3ze0XmED6etW3dGkxHKpNOUGaZALDK78V9C2IYosSOyfGCBOE
nb8ufbVfFOccORuxtp0JJD0+dpSXiuIxHYXgMzVMsGFrfSjZUhRXxPc/uOTN
BPShQ1U9p0VwWQc5aA3rGXiaoWv7yW0RnXNkMvz9GYDkMewlumsRVfiRduuc
YAA3zaKba7UWUS+NnvLuAANMlFKx4+cFRH8e92DzTgbQw+t31txYQBOnfLZ4
yDHAX6MUk6vF8yjKYDZ2oQqDUCCqLjv3E/3Lq887/Q4B45HOKaPcaeQLVGrK
cxqBzdPulYtu46hzXjxZsbEeBJVUzSopDyCjrux2O59S4OZLzXsZwUNHunyX
3OdSAUfYmbjFlQtEb36W9tZLRRYGjFqXPwcAOSL/gAmlDImFqbzzVh0Hala+
q3xD6pG7Z+nLx1vHwdeDXUZV6fWodi/gybqMg/V++s0f6+oRXeNMw8O4cWCc
YyK+bqoePeM2pohPjYP5y3eeF4Y0oOh13raFxHdQ27hDavOFR0icUVs5ED0J
as6eW9d45AmSknX5nT42DfJLzczjvjaiozru2GzlDEjqDGMGkJpQ6R7vJekN
M8D6w+1fO6lNyDn8yvW6YzNgbv/RxMKjTShz6J9w8ZYZYD8ot/rOsya0ifH9
YlHOLODXrI9kpTUj27B0+qjDHGhj35I6Q8Youu+tdXDBIpDMFZW0jGeg3if7
zl1pXASmv4/LZ6QxkEU6zox8swgC+vssPt5joHHb0pFEqV9Al+K08nwNA50s
u55ccPYXeGaQ3afVtdwftqH79ZYlENs1mqpCe4Z+Spg/WUcXgUm3OhTsWc9Q
dU6cS+SEKIx97VlW94GJBMpxwwoiYtAuwkZ99DMTDf0RG5knJwbbV+ffWPOD
idQiYspZumJwmJ+rf0KKheKP3yTJnBKDvfo9nLjNLOSpHon/FIhBFqLLegaz
kOLfocY1hSvgJLOH7jrHQhfyvRUH3SSgeHFEWvRUC7oTnnXvjpcE1Es4Q/ed
b0GVLoSueZAE7Bz8dt5ajI3Gfm23upMgARdyXV2+KLBRoIdM8I7G5XrTl/qf
NDYKoNS+StKShBkir8lSnmzkG7eUue2LJNxd7zwqw2ajkwHZ6rd+J0GW+hNy
w00Omu9cSXy/TYJTdf9YG8Vz0F+/hUcezyZBeeG72YLbHNSme/S9SR0Jnslu
XrrxFwfZDKvkvRskweO0u6NilRyk5526wdRhJezYyb61vYODpk7Eb+6Rl4aJ
+tHToXpclHAgzHzLPRmYEEOMK2AuShPSAstLZOBgX5zqJxYX3bN/f3/jIxm4
pSJAspHHRdWWDuJrXspAwxYNyyOvuKhDb+3zBSlZ2Objk+IxxEW6Ys3e7BBZ
SHvf6vq3DA+xayVSju2Tg2heGRm68pA4JWPoxpw8VHvhZmnZzkPksUh5spQC
1F81/qi/i4e0uP5mhcoK8Jg1f390Lw/tjtgVx9VXgF6FL/qbPvJQ+ODARqVT
CrAiIqFDcYqHxh6a+uQzFeAh6W+uxop89IX26SLdThFqF3/Q9LPjo3ZB7HiM
ghJMYuslmZfx0d3dubaHVynBdosJmfBKPjpY8zB7o7oS9P/PqbO+ho+IzAEb
Nk0J5vke99N5zEfs01ZZUnZK0ME1PXuUxUcNMwtWiRFK8ECpQ/5kDx9lUi+l
J48owan9RW1a8gJ0+BrdLJtJhrXl9rohfgKUmUuRnOGRoZnev2FfzgjQW8R+
4/qCDMMM4r56BQqQm/jmULkeMqyqC/NwuihAR29P1kVNk2HpD2Nf6WsC5P53
jImfnjKkylbnG94RIE9mkf7WZGUYQyAGrU6AAmU+axPuFMiubxy3mRWgz+FP
xWVOU+DX9JINe+cEKOBTwpC9HwXK35AZc1oQIL8W3VJGCAXGpyjYHRARIvoN
X5P6JAp0+b6ob08SomOT/eBeMwVOz3P7x1cLkV13x/EAbRXoE/hJwsZMiDTK
2JmSoyqQP/3n/U0XhOjaY2tXhZzV8F1RHtu9W4iCigIbzIxUoXF6OC/LuBXJ
im2nG35cC1VNdUZUb7Qi23OHMmjpanCHJq33EW5Fa56oX7DdsB6anEkRjfvR
itKC41ON2zVgNz1gvbEOgQ7G7TfIbdCEI0/jKzL3E4jmEXO48LoWNHWY3RMR
TKC3Qyvz0w9rw0v3J6bepxOIoH+0ImtQoRerNSqkikD94g9mM7Sp0MklNmN4
2VNF/lWqm6jQ4lH4BY9qAql+/qymZbBs+Yche2oI5B0yMWO0kwp7uwsZcnUE
moteqnA6QoVd3xl3sxoItOlf1bUJyVTYZ7NG7VYTgcztu1/IplMh6Zyl1tSy
HUfu3UrJpMJv7Zbjns0Eumig+ePPXCo8UX38izkiUGP9phdFZVRYMt3vOYKX
72NviWNxqPBqkMGx3SwC+fj/2OUgoMLZtl2yxcu+Iv1oUkBQIUPU8Q+lFgLl
OlucfvWGCjXtvn0dWPant3DXhwEq5IuMOsRxlve9IjbpM0yFRvpZp8aWLbeO
VTIySoVBoS7WblwCmZ6yX/39OxW++ftY8EYegWxFVxKXflBhsueXpqRlHy3g
x8zOUmHkL1L75LIDbJN2RixQISh93uTOJ9D//hP4v/8E/R+vrmcc
"]]},
Annotation[#, "Charting`Private`Tag$46426#1"]& ]}, {}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{-10, 10}, {-0.2405626114350194, 0.2405626114350194}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.7607717158747015`*^9, 3.760771734794016*^9}, {
3.7607720459948444`*^9, 3.760772069593275*^9}, 3.7607721103970757`*^9, {
3.760772510335108*^9, 3.7607725175036817`*^9}, {3.760772603419627*^9,
3.7607726478801727`*^9}, {3.7607729700002165`*^9,
3.7607729863721066`*^9}},ExpressionUUID->"0e784cd9-5e95-4c3e-b45e-\
f83fb5fc7448"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Table", "[",
RowBox[{
RowBox[{"FullSimplify", "[",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"Bindef", "[",
RowBox[{"[", "n", "]"}], "]"}], "/.",
RowBox[{"t", "\[Rule]", "tmax"}]}], " ", ")"}], "-",
RowBox[{"(",
RowBox[{
RowBox[{"Bindef", "[",
RowBox[{"[", "n", "]"}], "]"}], "/.",
RowBox[{"t", "\[Rule]", "tmin"}]}], ")"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"{",
RowBox[{"n", ",",
RowBox[{"{",
RowBox[{"1", ",", "2", ",", "3"}], "}"}]}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.7586847409348106`*^9, 3.758684840604787*^9}, {
3.7587658027488127`*^9, 3.758765812031988*^9}, {3.7587774519409566`*^9,
3.758777490163745*^9}, {3.758777599332055*^9, 3.7587776152594757`*^9}, {
3.7587776477884874`*^9,
3.7587776561391563`*^9}},ExpressionUUID->"1b697f8d-3eb2-4ac1-9ad6-\
6142c06f3409"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
FractionBox[
RowBox[{"py", " ",
RowBox[{"(",
RowBox[{
FractionBox[
RowBox[{"pz", "-", "tmax"}],
SqrtBox[
RowBox[{
SuperscriptBox["px", "2"], "+",
SuperscriptBox["py", "2"], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{"pz", "-", "tmax"}], ")"}], "2"]}]]], "+",
FractionBox[
RowBox[{
RowBox[{"-", "pz"}], "+", "tmin"}],
SqrtBox[
RowBox[{
SuperscriptBox["px", "2"], "+",
SuperscriptBox["py", "2"], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{"pz", "-", "tmin"}], ")"}], "2"]}]]]}], ")"}]}],
RowBox[{
SuperscriptBox["px", "2"], "+",
SuperscriptBox["py", "2"]}]], ",",
FractionBox[
RowBox[{"px", " ",
RowBox[{"(",
RowBox[{
FractionBox[
RowBox[{
RowBox[{"-", "pz"}], "+", "tmax"}],
SqrtBox[
RowBox[{
SuperscriptBox["px", "2"], "+",
SuperscriptBox["py", "2"], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{"pz", "-", "tmax"}], ")"}], "2"]}]]], "+",
FractionBox[
RowBox[{"pz", "-", "tmin"}],
SqrtBox[
RowBox[{
SuperscriptBox["px", "2"], "+",
SuperscriptBox["py", "2"], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{"pz", "-", "tmin"}], ")"}], "2"]}]]]}], ")"}]}],
RowBox[{
SuperscriptBox["px", "2"], "+",
SuperscriptBox["py", "2"]}]], ",", "0"}], "}"}]], "Output",
CellChangeTimes->{3.7587776569789114`*^9, 3.760771955943453*^9,
3.76077199102479*^9},ExpressionUUID->"a3cc86e0-4a77-43d3-8a32-6c5d78b2b256"]
}, Open ]],
Cell["\<\
solve the indefinite integral without concern for discontinuities \
\>", "Text",
CellChangeTimes->{{3.760772483276817*^9,
3.7607725053541837`*^9}},ExpressionUUID->"25247ad4-934b-4833-b1ff-\
d50ae83b23b3"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Bsol", "=",
RowBox[{"Integrate", "[",
RowBox[{"dB", ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "Len"}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]", "assum"}], ",",
RowBox[{"GenerateConditions", "\[Rule]", "False"}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.7586823021656966`*^9, 3.7586823188371143`*^9}, {
3.7586846640613823`*^9, 3.758684668422719*^9}, {3.75868485321307*^9,
3.758684857084717*^9}},ExpressionUUID->"ad37be3e-31c8-4d62-b395-\
46e2460e83b6"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
TagBox[GridBox[{
{"\[Piecewise]", GridBox[{
{
RowBox[{"-",
FractionBox[
RowBox[{"py", " ",
RowBox[{"(",
RowBox[{
RowBox[{"Len", " ",
SqrtBox[
RowBox[{
SuperscriptBox["px", "2"], "+",
SuperscriptBox["py", "2"], "+",
SuperscriptBox["pz", "2"]}]]}], "-",
RowBox[{"pz", " ",
SqrtBox[
RowBox[{
SuperscriptBox["px", "2"], "+",
SuperscriptBox["py", "2"], "+",
SuperscriptBox["pz", "2"]}]]}], "+",
RowBox[{"pz", " ",
SqrtBox[
RowBox[{
SuperscriptBox["Len", "2"], "+",
SuperscriptBox["px", "2"], "+",
SuperscriptBox["py", "2"], "-",
RowBox[{"2", " ", "Len", " ", "pz"}], "+",
SuperscriptBox["pz", "2"]}]]}]}], ")"}]}],
RowBox[{
RowBox[{"(",
RowBox[{
SuperscriptBox["px", "2"], "+",
SuperscriptBox["py", "2"]}], ")"}], " ",
SqrtBox[
RowBox[{
SuperscriptBox["px", "2"], "+",
SuperscriptBox["py", "2"], "+",
SuperscriptBox["pz", "2"]}]], " ",
SqrtBox[
RowBox[{
SuperscriptBox["Len", "2"], "+",
SuperscriptBox["px", "2"], "+",
SuperscriptBox["py", "2"], "-",
RowBox[{"2", " ", "Len", " ", "pz"}], "+",
SuperscriptBox["pz", "2"]}]]}]]}],
RowBox[{"Len", ">", "0"}]},
{"0",
TagBox["True",
"PiecewiseDefault",
AutoDelete->True]}
},
AllowedDimensions->{2, Automatic},
Editable->True,
GridBoxAlignment->{
"Columns" -> {{Left}}, "ColumnsIndexed" -> {},
"Rows" -> {{Baseline}}, "RowsIndexed" -> {}},
GridBoxItemSize->{
"Columns" -> {{Automatic}}, "ColumnsIndexed" -> {}, "Rows" -> {{1.}},
"RowsIndexed" -> {}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.84]},
Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}},
Selectable->True]}
},
GridBoxAlignment->{
"Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
"RowsIndexed" -> {}},
GridBoxItemSize->{
"Columns" -> {{Automatic}}, "ColumnsIndexed" -> {}, "Rows" -> {{1.}},
"RowsIndexed" -> {}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.35]},
Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}}],
"Piecewise",
DeleteWithContents->True,
Editable->False,
SelectWithContents->True,
Selectable->False], ",",
TagBox[GridBox[{
{"\[Piecewise]", GridBox[{
{
FractionBox[
RowBox[{"px", " ",
RowBox[{"(",
RowBox[{
RowBox[{"Len", " ",
SqrtBox[
RowBox[{
SuperscriptBox["px", "2"], "+",
SuperscriptBox["py", "2"], "+",
SuperscriptBox["pz", "2"]}]]}], "-",
RowBox[{"pz", " ",
SqrtBox[
RowBox[{
SuperscriptBox["px", "2"], "+",
SuperscriptBox["py", "2"], "+",
SuperscriptBox["pz", "2"]}]]}], "+",
RowBox[{"pz", " ",
SqrtBox[
RowBox[{
SuperscriptBox["Len", "2"], "+",
SuperscriptBox["px", "2"], "+",
SuperscriptBox["py", "2"], "-",
RowBox[{"2", " ", "Len", " ", "pz"}], "+",
SuperscriptBox["pz", "2"]}]]}]}], ")"}]}],
RowBox[{
RowBox[{"(",
RowBox[{
SuperscriptBox["px", "2"], "+",
SuperscriptBox["py", "2"]}], ")"}], " ",
SqrtBox[
RowBox[{
SuperscriptBox["px", "2"], "+",
SuperscriptBox["py", "2"], "+",
SuperscriptBox["pz", "2"]}]], " ",
SqrtBox[
RowBox[{
SuperscriptBox["Len", "2"], "+",
SuperscriptBox["px", "2"], "+",
SuperscriptBox["py", "2"], "-",
RowBox[{"2", " ", "Len", " ", "pz"}], "+",
SuperscriptBox["pz", "2"]}]]}]],
RowBox[{"Len", ">", "0"}]},
{"0",
TagBox["True",
"PiecewiseDefault",
AutoDelete->True]}
},
AllowedDimensions->{2, Automatic},
Editable->True,
GridBoxAlignment->{
"Columns" -> {{Left}}, "ColumnsIndexed" -> {},
"Rows" -> {{Baseline}}, "RowsIndexed" -> {}},
GridBoxItemSize->{
"Columns" -> {{Automatic}}, "ColumnsIndexed" -> {}, "Rows" -> {{1.}},
"RowsIndexed" -> {}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.84]},
Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}},
Selectable->True]}
},
GridBoxAlignment->{
"Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
"RowsIndexed" -> {}},
GridBoxItemSize->{
"Columns" -> {{Automatic}}, "ColumnsIndexed" -> {}, "Rows" -> {{1.}},
"RowsIndexed" -> {}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.35]},
Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}}],
"Piecewise",
DeleteWithContents->True,
Editable->False,
SelectWithContents->True,
Selectable->False], ",", "0"}], "}"}]], "Output",
CellChangeTimes->{
3.7586844289361057`*^9, 3.7586845010452976`*^9, {3.758684661828354*^9,
3.75868467124218*^9}, 3.758684859970001*^9, 3.7607719636626863`*^9,
3.7607723579671984`*^9},ExpressionUUID->"6161bae4-784a-452e-a8f2-\
b7d74a872ff6"]
}, Open ]],
Cell["\<\
Let Mathematica solve the integral with the assumption that the probe point \
is not on the z axis\
\>", "Text",
CellChangeTimes->{{3.7607724011395416`*^9, 3.7607724387782955`*^9}, {
3.7607724735828056`*^9,
3.7607724739575715`*^9}},ExpressionUUID->"fc37da96-efd6-495c-8d9c-\
b1aa4f985db8"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Bsol", "=",
RowBox[{"FullSimplify", "[",
RowBox[{"Integrate", "[",
RowBox[{"dB", ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "Len"}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]",
RowBox[{"Append", "[",
RowBox[{"assum", ",",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Abs", "[", "px", "]"}], "+",
RowBox[{"Abs", "[", "py", "]"}]}], "}"}], ">", "0"}]}], "]"}]}]}],
"]"}], "]"}]}]], "Input",
CellChangeTimes->{{3.7607721618912783`*^9, 3.760772162158114*^9},
3.760772271702467*^9, {3.7607723160710692`*^9, 3.760772318920309*^9}, {
3.760772367011613*^9, 3.7607723935752087`*^9}, {3.7607724683300486`*^9,
3.7607724701988935`*^9}, {3.760773356722413*^9,
3.760773356935281*^9}},ExpressionUUID->"6a13c645-ff56-4f3a-b596-\
4d24a2ec2c1d"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
TagBox[GridBox[{
{"\[Piecewise]", GridBox[{
{
FractionBox[
RowBox[{"py", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-",
FractionBox["Len",
SqrtBox[
RowBox[{
SuperscriptBox["px", "2"], "+",
SuperscriptBox["py", "2"], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{"Len", "-", "pz"}], ")"}], "2"]}]]]}], "+",
RowBox[{"pz", " ",
RowBox[{"(",
RowBox[{
FractionBox["1",
SqrtBox[
RowBox[{
SuperscriptBox["px", "2"], "+",
SuperscriptBox["py", "2"], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{"Len", "-", "pz"}], ")"}], "2"]}]]], "-",
FractionBox["1",
SqrtBox[
RowBox[{
SuperscriptBox["px", "2"], "+",
SuperscriptBox["py", "2"], "+",
SuperscriptBox["pz", "2"]}]]]}], ")"}]}]}], ")"}]}],
RowBox[{
SuperscriptBox["px", "2"], "+",
SuperscriptBox["py", "2"]}]],
RowBox[{"Len", ">", "0"}]},
{"0",
TagBox["True",
"PiecewiseDefault",
AutoDelete->True]}
},
AllowedDimensions->{2, Automatic},
Editable->True,
GridBoxAlignment->{
"Columns" -> {{Left}}, "ColumnsIndexed" -> {},
"Rows" -> {{Baseline}}, "RowsIndexed" -> {}},
GridBoxItemSize->{
"Columns" -> {{Automatic}}, "ColumnsIndexed" -> {}, "Rows" -> {{1.}},
"RowsIndexed" -> {}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.84]},
Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}},
Selectable->True]}
},
GridBoxAlignment->{
"Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
"RowsIndexed" -> {}},
GridBoxItemSize->{
"Columns" -> {{Automatic}}, "ColumnsIndexed" -> {}, "Rows" -> {{1.}},
"RowsIndexed" -> {}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.35]},
Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}}],
"Piecewise",
DeleteWithContents->True,
Editable->False,
SelectWithContents->True,
Selectable->False], ",",
TagBox[GridBox[{
{"\[Piecewise]", GridBox[{
{
FractionBox[
RowBox[{"px", " ",
RowBox[{"(",
RowBox[{
FractionBox["Len",
SqrtBox[
RowBox[{
SuperscriptBox["px", "2"], "+",
SuperscriptBox["py", "2"], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{"Len", "-", "pz"}], ")"}], "2"]}]]], "+",
RowBox[{"pz", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-",
FractionBox["1",
SqrtBox[
RowBox[{
SuperscriptBox["px", "2"], "+",
SuperscriptBox["py", "2"], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{"Len", "-", "pz"}], ")"}], "2"]}]]]}], "+",
FractionBox["1",
SqrtBox[
RowBox[{
SuperscriptBox["px", "2"], "+",
SuperscriptBox["py", "2"], "+",
SuperscriptBox["pz", "2"]}]]]}], ")"}]}]}], ")"}]}],
RowBox[{
SuperscriptBox["px", "2"], "+",
SuperscriptBox["py", "2"]}]],
RowBox[{"Len", ">", "0"}]},
{"0",
TagBox["True",
"PiecewiseDefault",
AutoDelete->True]}
},
AllowedDimensions->{2, Automatic},
Editable->True,
GridBoxAlignment->{
"Columns" -> {{Left}}, "ColumnsIndexed" -> {},
"Rows" -> {{Baseline}}, "RowsIndexed" -> {}},
GridBoxItemSize->{
"Columns" -> {{Automatic}}, "ColumnsIndexed" -> {}, "Rows" -> {{1.}},
"RowsIndexed" -> {}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.84]},
Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}},
Selectable->True]}
},
GridBoxAlignment->{
"Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
"RowsIndexed" -> {}},
GridBoxItemSize->{
"Columns" -> {{Automatic}}, "ColumnsIndexed" -> {}, "Rows" -> {{1.}},
"RowsIndexed" -> {}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.35]},
Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},