Skip to content

Solving the Multiple Depot Vehicle Routing Problem (MDVRP) with a Genetic Algorithm

Notifications You must be signed in to change notification settings

HenrikKronborg/Routing-Problem-Genetic-Algorithm

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

91 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MDVRP solved by a Genetic Algorithm

MDVRP

The Multiple Depots Vehicle Routing Problem (MDVRP) describes the vehicle scheduling challenge for a transportation company. The transportation company has multiple depots from which their vehicles depart and arrive, and has multiple customers being served from the different depots. The challenge is to make a schedule for each vehicle individually so that the vehicles drive in the most efficient way optimizing one or several objectives.

The MDVRP is NP-hard, which means that an efficient algorithm for solving the problem to optimality is unavailable.

Genetic Algorithm

A Genetic Algorithm (GA) is a metaheuristic inspired by natural selection. Genetic algorithms are commonly used to generate high-quality solutions to optimization and search problems by relying on bio-inspired operators such as selection, crossover and mutation.

Pseudocode
Generate a initial population
Calculate fitness value of individuals in population
REPEAT
    Selection: find the best individuals
    Crossover: create offsprings based on these individuals
    Mutation: possibility of editing the genes of the offsprings
UNTIL population has converged

The resulting product is an application capable of giving a good solution in a reasonable timeframe. The program is presented in the image below.

About

Solving the Multiple Depot Vehicle Routing Problem (MDVRP) with a Genetic Algorithm

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Java 100.0%