-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtest.py
103 lines (90 loc) · 3.46 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import argparse
from itertools import product
from pathlib import Path
from typing import List
import numpy as np
from vv_core_inference.forwarder import Forwarder
def run(
yukarin_s_model_dir: Path,
yukarin_sa_model_dir: Path,
yukarin_sosoa_model_dir: Path,
hifigan_model_dir: Path,
use_gpu: bool,
texts: List[str],
speaker_ids: List[int],
method: str,
):
if method == "torch":
from vv_core_inference.make_decode_forwarder import make_decode_forwarder
from vv_core_inference.make_yukarin_s_forwarder import make_yukarin_s_forwarder
from vv_core_inference.make_yukarin_sa_forwarder import make_yukarin_sa_forwarder
if method == "onnx":
from vv_core_inference.onnx_decode_forwarder import make_decode_forwarder
from vv_core_inference.onnx_yukarin_s_forwarder import make_yukarin_s_forwarder
from vv_core_inference.onnx_yukarin_sa_forwarder import make_yukarin_sa_forwarder
np.random.seed(0)
device = "cuda" if use_gpu else "cpu"
result = {
"s": None,
"sa": None,
"decode": None,
}
# yukarin_s
yukarin_s_forwarder = make_yukarin_s_forwarder(
yukarin_s_model_dir=yukarin_s_model_dir, device=device
)
def _s(**kwargs):
x = yukarin_s_forwarder(**kwargs)
result["s"] = x
return x
# yukarin_sa
yukarin_sa_forwarder = make_yukarin_sa_forwarder(
yukarin_sa_model_dir=yukarin_sa_model_dir, device=device
)
def _sa(**kwargs):
x = yukarin_sa_forwarder(**kwargs)
result["sa"] = x
return x
# decoder
decode_forwarder = make_decode_forwarder(
yukarin_sosoa_model_dir=yukarin_sosoa_model_dir,
hifigan_model_dir=hifigan_model_dir,
device=device,
)
def _decode(**kwargs):
x = decode_forwarder(**kwargs)
result["decode"] = x
return x
# Forwarder。このForwarderクラスの中を書き換えずに
# yukarin_s_forwarder、yukarin_sa_forwarder、decode_forwarderを置き換えたい。
forwarder = Forwarder(
yukarin_s_forwarder=_s,
yukarin_sa_forwarder=_sa,
decode_forwarder=_decode,
)
for text, speaker_id in product(texts, speaker_ids):
_wave = forwarder.forward(
text=text, speaker_id=speaker_id, f0_speaker_id=speaker_id
)
return result
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--yukarin_s_model_dir", type=Path, default=Path("model/yukarin_s")
)
parser.add_argument(
"--yukarin_sa_model_dir", type=Path, default=Path("model/yukarin_sa")
)
parser.add_argument(
"--yukarin_sosoa_model_dir", type=Path, default=Path("model/yukarin_sosoa")
)
parser.add_argument("--hifigan_model_dir", type=Path, default=Path("model/hifigan"))
parser.add_argument("--use_gpu", action="store_true")
parser.add_argument("--texts", nargs="+", default=["こんにちは、どうでしょう"])
parser.add_argument("--speaker_ids", nargs="+", type=int, default=[5, 9])
torch_result = run(**vars(parser.parse_args()), method="torch")
onnx_result = run(**vars(parser.parse_args()), method="onnx")
for key in ["s", "sa", "decode"]:
print(key, np.allclose(torch_result[key], onnx_result[key]))
print(np.abs(torch_result["decode"] - onnx_result["decode"]).max())
print(np.abs(torch_result["decode"] - onnx_result["decode"]).max() / np.abs(torch_result["decode"]).max())