Skip to content

It's the list with popular deep learning models related to classification and segmentation task

Notifications You must be signed in to change notification settings

Hurmean/awesome-computer-vision-models

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

33 Commits
 
 

Repository files navigation

awesome-computer-vision-models Awesome

This is the list with popular classification and segmentation models related with corresponding evaluation metrics.

Classification models

Model Number of parameters Top-1 Error Top-5 Error
AlexNet 61.1M 44.12 21.26
VGG-16 138.3M 26.78 8.69
ResNet-50 25.5M 23.50 6.87
Inception v3 23.8M 21.2 5.6
PreResNet-50 25.5M 23.39 6.68
DenseNet-121 7.9M 25.0 7.71
PyramidNet-200(a=300) 62.1M 19.5 4.8
PyramidNet-200(a=450) 116.4M 19.2 4.7
ResNeXt-101 83.5M 20.4 5.3
WRN-50-2-bottleneck 68.9M 21.9 6.03
Xception ? 21.0 5.5
Inception-ResNet-v2 55.9M 19.9 4.9
Inception-v4 42.6M 20.0 5.0
Very Deep PolyNet ? 18.71 4.25
DarkNet Ref 7.3M 38.09 16.71
Attention-92 51.3M 19.5 4.8
CondenseNet (G=C=8) 4.8M 26.2 8.3
DRN-A-50 25.6M 22.94 6.57
DPN-131 79.3M 18.55 4.16
ShuffleNet 2×(g=3) ? 26.3 ?
DiracNet-34 21.8M 27.79 9.34
SENet-154 115.2M 18.84 4.65
MobileNet 4.2M 29.4 10.5
NASNet-A 5.3M 26.0 8.7
AirNet50-1x64d (r=2) 27.43M 22.48 6.21
BAM-ResNet-50 25.92M 23.68 6.96
CBAM-ResNet-50 28.1M 23.02 6.38
SqueezeResNet 1.23M 39.83 17.84
2.0-SqNxt-23v5 3.2M 32.56 11.8
ShuffleNet v2 2x SE 7.6M 24.6 ?
456-MENet-24×1(g=3) 5.3M 28.4 9.8
FD-MobileNet 1x 2.9M 34.7 ?
MobileNetV2 3.4M 28.0 ?
IGCV3 3.5M 28.22 9.54
DARTS 4.9M 26.9 9.0
PNASNet-5 5.1M 25.8 8.1
AmoebaNet-C 5.1M 24.3 7.6
MnasNet-92 (+SE) 5.1M 23.87 7.15
IBN-Net50-a ? 22.54 6.32
MarginNet ? 22.0 ?
A^2 Net ? 23.0 6.5
FishNeXt-150 26.2M 21.5 ?
Shape-ResNet 25.5M 23.28 6.72
ResNet-50-Bin-5 ? 23.0 ?
SimCNN(k=3 train) ? 28.4 10.2
SKNet-50 27.5M 20.79 ?
SRM-ResNet-50 25.62M 22.87 6.49
EfficientNet-B7 66M 15.6 2.9
ProxylessNAS ? 24.9 7.5
MixNet-L 7.3M 21.1 5.8

Segmentation models

Semantic segmentation

Model PASCAL-Context Cityscapes (mIOU) PASCAL VOC 2012 (mIOU) COCO Stuff ADE20K VAL (mIOU)
U-Net ? ? ? ? ?
DeconvNet ? ? 72.5 ? ?
ParseNet 40.4 ? 69.8 ? ?
Piecewise 43.3 71.6 78.0 ? ?
SegNet ? 56.1 ? ? ?
FCN 37.8 65.3 62.2 22.7 29.39
ENet ? 58.3 ? ? ?
DilatedNet ? ? 67.6 ? 32.31
PixelNet ? ? 69.8 ? ?
RefineNet 47.3 73.6 83.4 33.6 40.70
LRR ? 71.8 79.3 ? ?
FRRN ? 71.8 ? ? ?
MultiNet ? ? ? ? ?
DeepLab 45.7 64.8 79.7 ? ?
LinkNet ? ? ? ? ?
Tiramisu ? ? ? ? ?
ICNet ? 70.6 ? ? ?
ERFNet ? 68.0 ? ? ?
PSPNet 47.8 80.2 85.4 ? 44.94
GCN ? 76.9 82.2 ? ?
Segaware ? ? 69.0 ? ?
PixelDCN ? ? 73.0 ? ?
DeepLabv3 ? ? 85.7 ? ?
DUC, HDC ? 77.1 ? ? ?
ShuffleSeg ? 59.3 ? ? ?
AdaptSegNet ? 46.7 ? ? ?
TuSimple-DUC 80.1 ? 83.1 ? ?
R2U-Net ? ? ? ? ?
Attention U-Net ? ? ? ? ?
DANet 52.6 81.5 ? 39.7 ?
ENCNet 51.7 75.8 85.9 ? 44.65
ShelfNet 48.4 75.8 84.2 ? ?
LadderNet ? ? ? ? ?
CCC-ERFnet ? 69.01 ? ? ?
DifNet-101 45.1 ? 73.2 ? ?
BiSeNet(Res18) ? ? 74.7 28.1 ?
ESPNet ? ? 63.01 ? ?
SPADE ? 62.3 ? 37.4 38.5
SeamlessSeg ? 77.5 ? ? ?

Detection models

Detector VOC07 (mAP@IoU=0.5) VOC12 (mAP@IoU=0.5) COCO (mAP)
R-CNN 58.5 - -
OverFeat - - -
MultiBox 29.0 - -
SPP-Net 59.2 - -
MR-CNN 78.2 73.9 -
AttentionNet - - -
Fast R-CNN 70.0 68.4 -
Faster R-CNN 73.2 70.4 36.8
YOLO v1 66.4 57.9 -
G-CNN 66.8 66.4 -
AZNet 70.4 - 22.3
ION 80.1 77.9 33.1
HyperNet 76.3 71.4 -
OHEM 78.9 76.3 22.4
MPN - - 33.2
SSD 76.8 74.9 31.2
GBDNet 77.2 - 27.0
CPF 76.4 72.6 -
MS-CNN - - -
R-FCN 79.5 77.6 29.9
PVANET - - -
DeepID-Net 69.0 - -
NoC 71.6 68.8 27.2
DSSD 81.5 80.0 -
TDM - - 37.3
FPN - - 36.2
YOLO v2 78.6 73.4 21.6
RON 77.6 75.4 -
DCN - - -
DeNet 77.1 73.9 33.8
CoupleNet 82.7 80.4 34.4
RetinaNet - - 39.1
Mask R-CNN - - 39.8
DSOD 77.7 76.3 -
SMN 70.0 - -
YOLO v3 - - 33.0
SIN 76.0 73.1 23.2
STDN 80.9 - -
RefineDet 83.8 83.5 41.8
MegDet - - -
RFBNet 82.2 - -
CornerNet - - 42.1
LibraRetinaNet - - 43.0
YOLACT-700 - - 31.2

About

It's the list with popular deep learning models related to classification and segmentation task

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published