forked from nothing-abc/VNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
461 lines (383 loc) · 23.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
# Copyright (c) 2022 NVIDIA CORPORATION.
# Licensed under the MIT license.
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
# LICENSE is in incl_licenses directory.
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
import itertools
import os
import time
import argparse
import json
import torch
import torch.nn.functional as F
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DistributedSampler, DataLoader
import torch.multiprocessing as mp
from torch.distributed import init_process_group
from torch.nn.parallel import DistributedDataParallel
from env import AttrDict, build_env
from meldataset import MelDataset, mel_spectrogram, get_dataset_filelist, MAX_WAV_VALUE
from models import VNet, MultiPeriodDiscriminator, MultiResolutionDiscriminator,\
feature_loss, generator_loss, discriminator_loss
from utils import plot_spectrogram, plot_spectrogram_clipped, scan_checkpoint, load_checkpoint, save_checkpoint, save_audio
import torchaudio as ta
from pesq import pesq
from tqdm import tqdm
import auraloss
torch.backends.cudnn.benchmark = False
def train(rank, a, h):
print('here-------------')
if h.num_gpus > 1:
#torch.distributed.init_process_group(backend='nccl', init_method='tcp://localhost:12345',
# world_size=2, rank=rank)
#torch.cuda.set_device(rank)
# initialize distributed初始化分布式训练环境
init_process_group(backend=h.dist_config['dist_backend'], init_method=h.dist_config['dist_url'],
world_size=h.dist_config['world_size'] * h.num_gpus, rank=rank)
# set seed and device
torch.cuda.manual_seed(h.seed)
torch.cuda.set_device(rank)
device = torch.device('cuda:{:d}'.format(rank))
# define VNet generator
generator = VNet(h).to(device)
print("Generator params: {}".format(sum(p.numel() for p in generator.parameters())))
print(generator)
# define discriminators. MPD is used by default
mpd = MultiPeriodDiscriminator(h).to(device)
print("Discriminator mpd params: {}".format(sum(p.numel() for p in mpd.parameters())))
print(mpd)
# define additional discriminators. VNet uses MRD as default
mrd = MultiResolutionDiscriminator(h).to(device)
print("Discriminator mrd params: {}".format(sum(p.numel() for p in mrd.parameters())))
print(mrd)
# create or scan the latest checkpoint from checkpoints directory
if rank == 0:#如果当前进程的排名是0,打印生成器的结构,并在指定的路径创建检查点目录。
# print(generator)
os.makedirs(a.checkpoint_path, exist_ok=True)
print("checkpoints directory : ", a.checkpoint_path)
if os.path.isdir(a.checkpoint_path):#检查指定的检查点目录是否存在,如果存在,则扫描最新的生成器检查点和鉴别器检查点
cp_g = scan_checkpoint(a.checkpoint_path, 'g_')
cp_do = scan_checkpoint(a.checkpoint_path, 'do_')
# load the latest checkpoint if exists
steps = 0#根据检查点的存在与否,加载生成器和鉴别器的状态。如果检查点不存在,设置state_dict_do = None,last_epoch = -1
if cp_g is None or cp_do is None:
state_dict_do = None
last_epoch = -1
else:#如果存在,加载生成器和鉴别器的状态字典,并更新步数和最后一个训练周期的值
state_dict_g = load_checkpoint(cp_g, device)
state_dict_do = load_checkpoint(cp_do, device)
generator.load_state_dict(state_dict_g['generator'])
mpd.load_state_dict(state_dict_do['mpd'])
mrd.load_state_dict(state_dict_do['mrd'])
steps = state_dict_do['steps'] + 1
last_epoch = state_dict_do['epoch']
# initialize DDP, optimizers, and schedulers
if h.num_gpus > 1:
generator = DistributedDataParallel(generator, device_ids=[rank]).to(device)
mpd = DistributedDataParallel(mpd, device_ids=[rank]).to(device)
mrd = DistributedDataParallel(mrd, device_ids=[rank]).to(device)
for d in (mpd.module if h.num_gpus > 1 else mpd).discriminators:
d.conv_post.normalize_weight()
for d in (mrd.module if h.num_gpus > 1 else mrd).discriminators:
d.conv_post.normalize_weight()#对判别器中的卷积层进行权重归一化操作
optim_g = torch.optim.AdamW(generator.parameters(), h.learning_rate, betas=[h.adam_b1, h.adam_b2])
optim_d = torch.optim.AdamW(itertools.chain(mrd.parameters(), mpd.parameters()),
h.learning_rate, betas=[h.adam_b1, h.adam_b2])
if state_dict_do is not None:
optim_g.load_state_dict(state_dict_do['optim_g'])
optim_d.load_state_dict(state_dict_do['optim_d'])
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=h.lr_decay, last_epoch=last_epoch)
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=h.lr_decay, last_epoch=last_epoch)
# define training and validation datasets
# unseen_validation_filelist will contain sample filepaths outside the seen training & validation dataset
# example: trained on LibriTTS, validate on VCTK
training_filelist, validation_filelist, list_unseen_validation_filelist = get_dataset_filelist(a)
trainset = MelDataset(training_filelist, h, h.segment_size, h.n_fft, h.num_mels,
h.hop_size, h.win_size, h.sampling_rate, h.fmin, h.fmax, n_cache_reuse=0,
shuffle=False if h.num_gpus > 1 else True, fmax_loss=h.fmax_for_loss, device=device,
fine_tuning=a.fine_tuning, base_mels_path=a.input_mels_dir, is_seen=True)
train_sampler = DistributedSampler(trainset) if h.num_gpus > 1 else None
train_loader = DataLoader(trainset, num_workers=h.num_workers, shuffle=False,
sampler=train_sampler,
batch_size=h.batch_size,
pin_memory=True,
drop_last=True)
if rank == 0:
validset = MelDataset(validation_filelist, h, h.segment_size, h.n_fft, h.num_mels,
h.hop_size, h.win_size, h.sampling_rate, h.fmin, h.fmax, False, False, n_cache_reuse=0,
fmax_loss=h.fmax_for_loss, device=device, fine_tuning=a.fine_tuning,
base_mels_path=a.input_mels_dir, is_seen=True)
validation_loader = DataLoader(validset, num_workers=1, shuffle=False,
sampler=None,
batch_size=1,
pin_memory=True,
drop_last=True)
list_unseen_validset = []
list_unseen_validation_loader = []
for i in range(len(list_unseen_validation_filelist)):
unseen_validset = MelDataset(list_unseen_validation_filelist[i], h, h.segment_size, h.n_fft, h.num_mels,
h.hop_size, h.win_size, h.sampling_rate, h.fmin, h.fmax, False, False, n_cache_reuse=0,
fmax_loss=h.fmax_for_loss, device=device, fine_tuning=a.fine_tuning,
base_mels_path=a.input_mels_dir, is_seen=False)
unseen_validation_loader = DataLoader(unseen_validset, num_workers=1, shuffle=False,
sampler=None,
batch_size=1,
pin_memory=True,
drop_last=True)
list_unseen_validset.append(unseen_validset)
list_unseen_validation_loader.append(unseen_validation_loader)
# Tensorboard logger
sw = SummaryWriter(os.path.join(a.checkpoint_path, 'logs'))
if a.save_audio: # also save audio to disk if --save_audio is set to True
os.makedirs(os.path.join(a.checkpoint_path, 'samples'), exist_ok=True)
# validation loop
# "mode" parameter is automatically defined as (seen or unseen)_(name of the dataset)
# if the name of the dataset contains "nonspeech", it skips PESQ calculation to prevent errors
#对模型进行验证,并计算验证集上的评估指标,如Mel频谱误差、PESQ和MRSTFT。它还提供了保存音频和频谱图的选项,以及将评估指标写入TensorBoard的功能
def validate(rank, a, h, loader, mode="seen"):
assert rank == 0, "validate should only run on rank=0"
generator.eval()
torch.cuda.empty_cache()
val_err_tot = 0
val_pesq_tot = 0
val_mrstft_tot = 0
# modules for evaluation metrics
pesq_resampler = ta.transforms.Resample(h.sampling_rate, 16000).cuda()
loss_mrstft = auraloss.freq.MultiResolutionSTFTLoss(device="cuda")
if a.save_audio: # also save audio to disk if --save_audio is set to True
os.makedirs(os.path.join(a.checkpoint_path, 'samples', 'gt_{}'.format(mode)), exist_ok=True)
os.makedirs(os.path.join(a.checkpoint_path, 'samples', '{}_{:08d}'.format(mode, steps)), exist_ok=True)
with torch.no_grad():
print("step {} {} speaker validation...".format(steps, mode))
# loop over validation set and compute metrics
for j, batch in tqdm(enumerate(loader)):
x, y, _, y_mel = batch
y = y.to(device)
if hasattr(generator, 'module'):
y_g_hat = generator.module(x.to(device))
else:
y_g_hat = generator(x.to(device))
y_mel = y_mel.to(device, non_blocking=True)
y_g_hat_mel = mel_spectrogram(y_g_hat.squeeze(1), h.n_fft, h.num_mels, h.sampling_rate,
h.hop_size, h.win_size,
h.fmin, h.fmax_for_loss)
val_err_tot += F.l1_loss(y_mel, y_g_hat_mel).item()
# PESQ calculation. only evaluate PESQ if it's speech signal (nonspeech PESQ will error out)
if not "nonspeech" in mode: # skips if the name of dataset (in mode string) contains "nonspeech"
# resample to 16000 for pesq
y_16k = pesq_resampler(y)
y_g_hat_16k = pesq_resampler(y_g_hat.squeeze(1))
y_int_16k = (y_16k[0] * MAX_WAV_VALUE).short().cpu().numpy()
y_g_hat_int_16k = (y_g_hat_16k[0] * MAX_WAV_VALUE).short().cpu().numpy()
val_pesq_tot += pesq(16000, y_int_16k, y_g_hat_int_16k, 'wb')
# MRSTFT calculation
val_mrstft_tot += loss_mrstft(y_g_hat.squeeze(1), y).item()
# log audio and figures to Tensorboard
if j % a.eval_subsample == 0: # subsample every nth from validation set
if steps >= 0:
sw.add_audio('gt_{}/y_{}'.format(mode, j), y[0], steps, h.sampling_rate)
if a.save_audio: # also save audio to disk if --save_audio is set to True
save_audio(y[0], os.path.join(a.checkpoint_path, 'samples', 'gt_{}'.format(mode), '{:04d}.wav'.format(j)), h.sampling_rate)
sw.add_figure('gt_{}/y_spec_{}'.format(mode, j), plot_spectrogram(x[0]), steps)
sw.add_audio('generated_{}/y_hat_{}'.format(mode, j), y_g_hat[0], steps, h.sampling_rate)
if a.save_audio: # also save audio to disk if --save_audio is set to True
save_audio(y_g_hat[0, 0], os.path.join(a.checkpoint_path, 'samples', '{}_{:08d}'.format(mode, steps), '{:04d}.wav'.format(j)), h.sampling_rate)
# spectrogram of synthesized audio
y_hat_spec = mel_spectrogram(y_g_hat.squeeze(1), h.n_fft, h.num_mels,
h.sampling_rate, h.hop_size, h.win_size,
h.fmin, h.fmax)
sw.add_figure('generated_{}/y_hat_spec_{}'.format(mode, j),
plot_spectrogram(y_hat_spec.squeeze(0).cpu().numpy()), steps)
# visualization of spectrogram difference between GT and synthesized audio
# difference higher than 1 is clipped for better visualization
spec_delta = torch.clamp(torch.abs(x[0] - y_hat_spec.squeeze(0).cpu()), min=1e-6, max=1.)
sw.add_figure('delta_dclip1_{}/spec_{}'.format(mode, j),
plot_spectrogram_clipped(spec_delta.numpy(), clip_max=1.), steps)
val_err = val_err_tot / (j + 1)
val_pesq = val_pesq_tot / (j + 1)
val_mrstft = val_mrstft_tot / (j + 1)
# log evaluation metrics to Tensorboard
sw.add_scalar("validation_{}/mel_spec_error".format(mode), val_err, steps)
sw.add_scalar("validation_{}/pesq".format(mode), val_pesq, steps)
sw.add_scalar("validation_{}/mrstft".format(mode), val_mrstft, steps)
generator.train()
# if the checkpoint is loaded, start with validation loop
if steps != 0 and rank == 0 and not a.debug:
if not a.skip_seen:
validate(rank, a, h, validation_loader,
mode="seen_{}".format(train_loader.dataset.name))
for i in range(len(list_unseen_validation_loader)):
validate(rank, a, h, list_unseen_validation_loader[i],
mode="unseen_{}".format(list_unseen_validation_loader[i].dataset.name))
# exit the script if --evaluate is set to True
if a.evaluate:
exit()
# main training loop
generator.train()
mpd.train()
mrd.train()
for epoch in range(max(0, last_epoch), a.training_epochs):
if rank == 0:
start = time.time()
print("Epoch: {}".format(epoch+1))
if h.num_gpus > 1:
train_sampler.set_epoch(epoch)
for i, batch in enumerate(train_loader):
if rank == 0:
start_b = time.time()
x, y, _, y_mel = batch
x = x.to(device, non_blocking=True)
y = y.to(device, non_blocking=True)
y_mel = y_mel.to(device, non_blocking=True)
y = y.unsqueeze(1)
y_g_hat = generator(x)
y_g_hat_mel = mel_spectrogram(y_g_hat.squeeze(1), h.n_fft, h.num_mels, h.sampling_rate, h.hop_size, h.win_size,
h.fmin, h.fmax_for_loss)
optim_d.zero_grad()
# MPD
y_df_hat_r, y_df_hat_g, _, _ = mpd(y, y_g_hat.detach(), flg_train=True)
loss_disc_f, losses_disc_f_r, losses_disc_f_g = discriminator_loss(y_df_hat_r, y_df_hat_g)
# MRD
y_ds_hat_r, y_ds_hat_g, _, _ = mrd(y, y_g_hat.detach(), flg_train=True)
loss_disc_s, losses_disc_s_r, losses_disc_s_g = discriminator_loss(y_ds_hat_r, y_ds_hat_g)
loss_disc_all = loss_disc_s + loss_disc_f
# whether to freeze D for initial training steps
if steps >= a.freeze_step:
loss_disc_all.backward()
grad_norm_mpd = torch.nn.utils.clip_grad_norm_(mpd.parameters(), 1000.)
grad_norm_mrd = torch.nn.utils.clip_grad_norm_(mrd.parameters(), 1000.)
optim_d.step()
for d in (mpd.module if h.num_gpus > 1 else mpd).discriminators:
d.conv_post.normalize_weight()
for d in (mrd.module if h.num_gpus > 1 else mrd).discriminators:
d.conv_post.normalize_weight()
else:
print("WARNING: skipping D training for the first {} steps".format(a.freeze_step))
grad_norm_mpd = 0.
grad_norm_mrd = 0.
# generator
optim_g.zero_grad()
# L1 Mel-Spectrogram Loss
loss_mel = F.l1_loss(y_mel, y_g_hat_mel) * 45
# MPD loss
y_df_hat_r, y_df_hat_g, fmap_f_r, fmap_f_g = mpd(y, y_g_hat)
loss_fm_f = feature_loss(fmap_f_r, fmap_f_g)
loss_gen_f, losses_gen_f = generator_loss(y_df_hat_g)
# MRD loss
y_ds_hat_r, y_ds_hat_g, fmap_s_r, fmap_s_g = mrd(y, y_g_hat)
loss_fm_s = feature_loss(fmap_s_r, fmap_s_g)
loss_gen_s, losses_gen_s = generator_loss(y_ds_hat_g)
if steps >= a.freeze_step:
loss_gen_all = loss_gen_s + loss_gen_f + loss_fm_s + loss_fm_f + loss_mel
else:
print("WARNING: using regression loss only for G for the first {} steps".format(a.freeze_step))
loss_gen_all = loss_mel
loss_gen_all.backward()
grad_norm_g = torch.nn.utils.clip_grad_norm_(generator.parameters(), 1000.)
optim_g.step()
if rank == 0:
# STDOUT logging
if steps % a.stdout_interval == 0:
with torch.no_grad():
mel_error = F.l1_loss(y_mel, y_g_hat_mel).item()
print('Steps : {:d}, Gen Loss Total : {:4.3f}, Mel-Spec. Error : {:4.3f}, s/b : {:4.3f}'.
format(steps, loss_gen_all, mel_error, time.time() - start_b))
# checkpointing
if steps % a.checkpoint_interval == 0 and steps != 0:
checkpoint_path = "{}/g_{:08d}".format(a.checkpoint_path, steps)
save_checkpoint(checkpoint_path,
{'generator': (generator.module if h.num_gpus > 1 else generator).state_dict()})
checkpoint_path = "{}/do_{:08d}".format(a.checkpoint_path, steps)
save_checkpoint(checkpoint_path,
{'mpd': (mpd.module if h.num_gpus > 1 else mpd).state_dict(),
'mrd': (mrd.module if h.num_gpus > 1 else mrd).state_dict(),
'optim_g': optim_g.state_dict(),
'optim_d': optim_d.state_dict(),
'steps': steps,
'epoch': epoch})
# Tensorboard summary logging
if steps % a.summary_interval == 0:
sw.add_scalar("training/gen_loss_total", loss_gen_all, steps)
sw.add_scalar("training/mel_spec_error", mel_error, steps)
sw.add_scalar("training/fm_loss_mpd", loss_fm_f.item(), steps)
sw.add_scalar("training/gen_loss_mpd", loss_gen_f.item(), steps)
sw.add_scalar("training/disc_loss_mpd", loss_disc_f.item(), steps)
sw.add_scalar("training/grad_norm_mpd", grad_norm_mpd, steps)
sw.add_scalar("training/fm_loss_mrd", loss_fm_s.item(), steps)
sw.add_scalar("training/gen_loss_mrd", loss_gen_s.item(), steps)
sw.add_scalar("training/disc_loss_mrd", loss_disc_s.item(), steps)
sw.add_scalar("training/grad_norm_mrd", grad_norm_mrd, steps)
sw.add_scalar("training/grad_norm_g", grad_norm_g, steps)
sw.add_scalar("training/learning_rate_d", scheduler_d.get_last_lr()[0], steps)
sw.add_scalar("training/learning_rate_g", scheduler_g.get_last_lr()[0], steps)
sw.add_scalar("training/epoch", epoch+1, steps)
# validation
if steps % a.validation_interval == 0:
# plot training input x so far used
for i_x in range(x.shape[0]):
sw.add_figure('training_input/x_{}'.format(i_x), plot_spectrogram(x[i_x].cpu()), steps)
sw.add_audio('training_input/y_{}'.format(i_x), y[i_x][0], steps, h.sampling_rate)
# seen and unseen speakers validation loops
if not a.debug and steps != 0:
validate(rank, a, h, validation_loader,
mode="seen_{}".format(train_loader.dataset.name))
for i in range(len(list_unseen_validation_loader)):
validate(rank, a, h, list_unseen_validation_loader[i],
mode="unseen_{}".format(list_unseen_validation_loader[i].dataset.name))
steps += 1
scheduler_g.step()
scheduler_d.step()
if rank == 0:
print('Time taken for epoch {} is {} sec\n'.format(epoch + 1, int(time.time() - start)))
#配置,GPU数量
def main():
print('Initializing Training Process..')
parser = argparse.ArgumentParser()
parser.add_argument('--group_name', default=None)
parser.add_argument('--input_wavs_dir', default='LibriTTS')
parser.add_argument('--input_mels_dir', default='ft_dataset')
parser.add_argument('--input_training_file', default='LibriTTS/train-full.txt')
parser.add_argument('--input_validation_file', default='LibriTTS/val-full.txt')
parser.add_argument('--list_input_unseen_wavs_dir', nargs='+', default=['LibriTTS', 'LibriTTS'])
parser.add_argument('--list_input_unseen_validation_file', nargs='+', default=['LibriTTS/dev-clean.txt', 'LibriTTS/dev-other.txt'])
parser.add_argument('--checkpoint_path', default='exp/vnet')
parser.add_argument('--config', default='')
parser.add_argument('--training_epochs', default=100000, type=int)
parser.add_argument('--stdout_interval', default=5, type=int)
parser.add_argument('--checkpoint_interval', default=50000, type=int)
parser.add_argument('--summary_interval', default=100, type=int)
parser.add_argument('--validation_interval', default=50000, type=int)
parser.add_argument('--freeze_step', default=0, type=int,
help='freeze D for the first specified steps. G only uses regression loss for these steps.')
parser.add_argument('--fine_tuning', default=False, type=bool)
parser.add_argument('--debug', default=False, type=bool,
help="debug mode. skips validation loop throughout training")
parser.add_argument('--evaluate', default=False, type=bool,
help="only run evaluation from checkpoint and exit")
parser.add_argument('--eval_subsample', default=5, type=int,
help="subsampling during evaluation loop")
parser.add_argument('--skip_seen', default=False, type=bool,
help="skip seen dataset. useful for test set inference")
parser.add_argument('--save_audio', default=False, type=bool,
help="save audio of test set inference to disk")
a = parser.parse_args()
with open(a.config) as f:
data = f.read()
json_config = json.loads(data)
h = AttrDict(json_config)
build_env(a.config, 'config.json', a.checkpoint_path)
torch.manual_seed(h.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(h.seed)
h.num_gpus = torch.cuda.device_count()
h.batch_size = int(h.batch_size / h.num_gpus)
print('Batch size per GPU :', h.batch_size)
else:
pass
if h.num_gpus > 1:
mp.spawn(train, nprocs=h.num_gpus, args=(a, h,))
else:
train(0, a, h)
if __name__ == '__main__':
main()