Experiment code associated with our paper:
Chen W, Fuge M. Active Expansion Sampling for Learning Feasible Domains in an Unbounded Input Space. Structural and Multidisciplinary Optimization, 57(3), 925-945.
Conventional adaptive sampling/active learning | AES |
---|---|
- numpy
- scipy
- matplotlib
- sklearn
- libact (only for straddle heuristic)
- pyDOE (only for Neighborhood-Voronoi algorithm)
AES:
python test_2d_aes.py
Neighborhood-Voronoi algorithm:
python test_2d_nv.py
Straddle heuristic:
python test_2d_straddle.py
AES:
python test_highdim_aes.py
Neighborhood-Voronoi algorithm:
python test_highdim_nv.py
Straddle heuristic:
python test_highdim_straddle.py
This code is licensed under the MIT license. Feel free to use all or portions for your research or related projects so long as you provide the following citation information:
Chen W, Fuge M. Active expansion sampling for learning feasible domains in an unbounded input space. Structural and Multidisciplinary Optimization. 2018 Jan 19. doi:10.1007/s00158-017-1894-y.
@article{chen2018aes,
author="Chen, Wei
and Fuge, Mark",
title="Active expansion sampling for learning feasible domains in an unbounded input space",
journal="Structural and Multidisciplinary Optimization",
year="2018",
month="Jan",
day="19",
issn="1615-1488",
doi="10.1007/s00158-017-1894-y",
url="https://doi.org/10.1007/s00158-017-1894-y"
}
This paper describes an interesting application of AES:
Chen W, Fuge M. Beyond the Known: Detecting Novel Feasible Domains Over an Unbounded Design Space. ASME. J. Mech. Des. 2017;139(11):111405-111405-10. doi:10.1115/1.4037306.