This code is licensed under the MIT license. Feel free to use all or portions for your research or related projects so long as you provide the following citation information:
Chen W, Fuge M. Synthesizing Designs With Inter-Part Dependencies Using Hierarchical Generative Adversarial Networks. ASME. J. Mech. Des. 2019. (Accepted)
@article{chen2019hgan,
author={Chen, Wei and Fuge, Mark},
title={Synthesizing Designs with Inter-part Dependencies Using Hierarchical Generative Adversarial Networks},
journal={Journal of Mechanical Design},
volume={141},
number={11},
pages={111403},
year={2019},
publisher={American Society of Mechanical Engineers}
}
- tensorflow-1.6.0
- numpy
- matplotlib
cd AHH
python build_data.py
python run_<n>parts.py
positional arguments:
mode startover or evaluate
data dataset
optional arguments:
-h, --help show this help message and exit
--sample_size sample size
--save_interval number of intervals for saving the trained model and plotting results
Example: train HGAN on AHH:
python run_3parts.py startover AHH --sample_size=10000 --save_interval=500
python run_infogan.py
positional arguments:
mode startover or evaluate
data dataset
optional arguments:
-h, --help show this help message and exit
--sample_size sample size
--save_interval number of intervals for saving the trained model and plotting results