-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
190 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,102 @@ | ||
# THIS SCRIPT REPRODUCES COLUMN 3 OF FIGURE TS.24 (IPCC-WGI AR6). | ||
# THIS SCRIPT USES LIBRARIES FROM THE climate4R FRAMEWORK (Iturbide et al. 2019). Go to https://github.com/SantanderMetGroup/climate4R for installation and other information. | ||
# THIS SCRIPT USES MATERIAL FROM THE IPCC-WGI/Atlas GitHub repository (DOI:10.5281/zenodo.5171760; clone or download: https://github.com/IPCC-WG1/Atlas). | ||
# AUTHOR: Jorge Baño-Medina | ||
|
||
options(java.parameters = "-Xmx8g") | ||
|
||
# Load climate4R libraries ------------------------------------------------------------------ | ||
library(loadeR) | ||
library(transformeR) | ||
library(visualizeR) | ||
library(geoprocessoR) | ||
|
||
# Load other libraries ---------------------------------------------------------------------- | ||
library(magrittr) | ||
library(sp) | ||
library(rgdal) | ||
library(smoothr) | ||
library(RColorBrewer) | ||
library(gridExtra) | ||
|
||
# Function to compute model agreement ------------------------------------------------------- | ||
consensus <- function(x, th = 80) { | ||
mp <- mean(x, na.rm = TRUE) | ||
if (is.na(mp)) { | ||
1 | ||
} else { | ||
if (mp > 0) { | ||
as.numeric(sum(as.numeric(x > 0), na.rm = TRUE) > as.integer(length(x) * th / 100)) | ||
} else if (mp < 0) { | ||
as.numeric(sum(as.numeric(x < 0), na.rm = TRUE) > as.integer(length(x) * th / 100)) | ||
} else if (mp == 0){ | ||
1 | ||
} | ||
} | ||
} | ||
|
||
### Choose Data parameters ------------------------------------------------------------------------------ | ||
scenario <- "rcp26" # either rcp26 or rcp85 | ||
period <- "2041-2060" # either 2041-2060 or 2081-2100 | ||
local_path = "final_data/" # path to netCDF data | ||
|
||
# set working directory | ||
setwd(local_path) | ||
|
||
### Loading vectorial Spatial Objects for map plotting ------------------------------------------------------------------------------ | ||
# Coast | ||
coast <- readOGR("WORLD_coastline.shp") # available in https://github.com/IPCC-WG1/Atlas/tree/main/notebooks/auxiliary-material | ||
proj4string(coast) <- CRS("+proj=longlat +datum=WGS84 +no_defs") | ||
coast.rob <- spTransform(coast, CRSobj = CRS("+proj=robin +lon_0=0 +x_0=0 +y_0=0 +datum=WGS84 +units=m +no_defs")) | ||
# Contour | ||
contour <- SpatialPolygons(list(Polygons(list(Polygon(matrix(c(-180, -180, 180, 180, -180, -90, 90, 90, -90, -90), ncol = 2))), ID = "A"))) | ||
proj4string(contour) <- proj4string(coast) | ||
contour <- densify(contour, max_distance = 0.44) | ||
contour.rob <- spTransform(contour, CRS("+proj=robin +lon_0=0 +x_0=0 +y_0=0 +ellps=WGS84 +datum=WGS84 +units=m +no_defs")) | ||
# IPCC reference regions | ||
regs <- get(load("./IPCC-WGI-reference-regions-v4_R.rda")) # available in https://github.com/IPCC-WG1/Atlas/blob/main/reference-regions/IPCC-WGI-reference-regions-v4_R.rda | ||
regs <- as(regs, "SpatialPolygons") | ||
regs.rob <- spTransform(regs, CRS("+proj=robin +lon_0=0 +x_0=0 +y_0=0 +datum=WGS84 +units=m +no_defs")) | ||
|
||
### Sea-Land Mask (available in https://github.com/IPCC-WG1/Atlas/blob/main/reference-grids/land_sea_mask_05degree.nc4) ------------------------------------------------------------------------------ | ||
mask <- loadGridData("land_sea_mask_05degree.nc4", var = "sftlf") %>% binaryGrid(condition = "LT",threshold = 1, values = c(1,NA)) | ||
|
||
### Loading tx35.nc files ------------------------------------------------------------------------------ | ||
grid <- loadGridData(paste0("./CORDEX_TX35_", scenario, "_", period, "_rel.to-1995-2014.nc"), var = "tx35isimip") | ||
|
||
### Hatching ------------------------------------------------------------------------------ | ||
mask2 <- aggregateGrid(grid, aggr.mem = list(FUN = "mean", na.rm = TRUE)) %>% gridArithmetics(mask) %>% binaryGrid(condition = "GT",threshold = -9999, values = c(NA,1)) # to include land-points with NA values, e.g., Arctic or Antarctica; in addition to sea points which are NA | ||
uncer <- aggregateGrid(grid, aggr.mem = list(FUN = consensus, th = 80)) %>% gridArithmetics(mask2) | ||
attr(uncer$xyCoords, "projection") <- "+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs" | ||
uncer <- warpGrid(climatology(uncer), new.CRS = CRS("+proj=robin +lon_0=0 +x_0=0 +y_0=0 +datum=WGS84 +units=m +no_defs")) | ||
l <- c(map.hatching(clim = climatology(uncer), | ||
threshold = 0.5, | ||
condition = "GE", | ||
density = 8, | ||
angle = "45", coverage.percent = 100, | ||
upscaling.aggr.fun = list(FUN = "mean", na.rm = TRUE) | ||
), "which" = 1, lwd = 0.5) | ||
|
||
### Compute the ensemble mean and proyect grid to robin ------------------------------------------------------------------------------ | ||
grid %<>% aggregateGrid(aggr.mem = list(FUN = "mean", na.rm = TRUE)) | ||
grid$Data[which(is.na(grid$Data), arr.ind = TRUE)] <- NA | ||
grid %<>% gridArithmetics(mask) | ||
attr(grid$xyCoords, "projection") <- "+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs" | ||
grid <- warpGrid(climatology(grid), new.CRS = CRS("+proj=robin +lon_0=0 +x_0=0 +y_0=0 +datum=WGS84 +units=m +no_defs")) | ||
|
||
### We display the spatial maps ------------------------------------------------------------------------------ | ||
spatialPlot(grid, | ||
col.regions = c("#808080",rev(brewer.pal(n = 11, "RdBu"))[5:11]) %>% colorRampPalette(), | ||
at = c(-32,-31,-30,-5,-1,1,5,15,30,45,60,75,100,150,200,250), | ||
set.min = -31,set.max = 250, | ||
main = paste("TX35 for",period,paste0("(",scenario,")"),"rel. to 1995-2014"), | ||
par.settings = list(axis.line = list(col = 'transparent')), | ||
sp.layout = list( | ||
l, | ||
list(regs.rob, first = FALSE, lwd = 0.6), | ||
list(coast.rob, col = "gray50", first = FALSE, lwd = 0.6), | ||
list(contour.rob, col = "black", first = FALSE, lwd = 0.7) | ||
)) | ||
|
||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,88 @@ | ||
# THIS SCRIPT REPRODUCES COLUMNS 1 AND 2 OF FIGURE TS.24 (IPCC-WGI AR6). | ||
# THIS SCRIPT USES LIBRARIES FROM THE climate4R FRAMEWORK (Iturbide et al. 2019). Go to https://github.com/SantanderMetGroup/climate4R for installation and other information. | ||
# THIS SCRIPT USES MATERIAL FROM THE IPCC-WGI/Atlas GitHub repository (DOI:10.5281/zenodo.5171760; clone or download: https://github.com/IPCC-WG1/Atlas). | ||
# AUTHOR: Maialen Iturbide Martínez de Albéniz | ||
|
||
# Load climate4R libraries for data loading, changing spatial projection and creating map figures ---------------------------------------------------------------- | ||
library(loadeR) | ||
library(geoprocessoR) | ||
library(visualizeR) | ||
|
||
# Load other libraries related to the management of spatial data and graphics visualization | ||
# (use functions install.packages("name_of_the_package") or devtools::install_github("cran/name_of_the_package") to install them) ---------------------------------- | ||
library(RColorBrewer) | ||
library(rgdal) | ||
library(smoothr) | ||
library(gridExtra) | ||
|
||
# Directory containing the data (changed by the user) ------------------------------------------------------------------------------------------------------------ | ||
data.dir <- "final_data/" | ||
|
||
# Auxiliary data for map drawing (clone or download: https://github.com/IPCC-WG1/Atlas) -------------------------------------------------------------------------- | ||
regions <- get(load("MyDirectory/Atlas/reference-regions/IPCC-WGI-reference-regions-v4_R.rda")) | ||
coast <- coast <- readOGR("MyDirectory/Atlas/notebooks/auxiliary-materialWORLD_coastline.shp") | ||
world.contour <- SpatialPolygons(list(Polygons(list(Polygon(matrix(c(-180, -180, 180, 180, -180, -90, 90, 90, -90, -90), ncol = 2))), ID = "A"))) | ||
proj4string(world.contour) <- proj4string(coast) | ||
world.contour <- densify(world.contour, max_distance = 0.44) | ||
|
||
# Create file names objects | ||
change.files <- c("CMIP5_TX35_rcp26_2041-2060_rel.to-1995-2014.nc", "CMIP5_TX35_rcp26_2081-2100_rel.to-1995-2014.nc", | ||
"CMIP5_TX35_rcp85_2041-2060_rel.to-1995-2014.nc", "CMIP5_TX35_rcp85_2081-2100_rel.to-1995-2014.nc", | ||
"CMIP6_TX35_ssp126_2041-2060_rel.to-1995-2014.nc", "CMIP6_TX35_ssp126_2081-2100_rel.to-1995-2014.nc", | ||
"CMIP6_TX35_ssp585_2041-2060_rel.to-1995-2014.nc", "CMIP6_TX35_ssp585_2081-2100_rel.to-1995-2014.nc") | ||
uncertainty.files <- c("CMIP5_TX35_rcp26_2041-2060_rel.to-1995-2014_model_agreement.nc", "CMIP5_TX35_rcp26_2081-2100_rel.to-1995-2014_model_agreement.nc", | ||
"CMIP5_TX35_rcp85_2041-2060_rel.to-1995-2014_model_agreement.nc", "CMIP5_TX35_rcp85_2081-2100_rel.to-1995-2014_model_agreement.nc", | ||
"CMIP6_TX35_ssp126_2041-2060_rel.to-1995-2014_model_agreement.nc", "CMIP6_TX35_ssp126_2081-2100_rel.to-1995-2014_model_agreement.nc", | ||
"CMIP6_TX35_ssp585_2041-2060_rel.to-1995-2014_model_agreement.nc", "CMIP6_TX35_ssp585_2081-2100_rel.to-1995-2014_model_agreement.nc") | ||
|
||
# Load the data -------------------------------------------------------------------------------------------------------------------------------------------------- | ||
change.grids <- lapply(paste0(data.dir, "/", change.files), loadGridData, var = "TX35") | ||
uncertainty.grids <- lapply(paste0(data.dir, "/", uncertainty.files), loadGridData, var = "TX35_uncertainty") | ||
|
||
# Change projection to Robinson ---------------------------------------------------------------------------------------------------------------------------------- | ||
change.grids.rob <- lapply(change.grids, function(x) warpGrid(x, new.CRS = "+proj=robin +lon_0=0 +x_0=0 +y_0=0 +datum=WGS84 +units=m +no_defs")) | ||
uncertainty.grids.rob <- lapply(uncertainty.grids, function(x) warpGrid(x, new.CRS = "+proj=robin +lon_0=0 +x_0=0 +y_0=0 +datum=WGS84 +units=m +no_defs")) | ||
regions.rob <- spTransform(regions, CRSobj = CRS("+proj=robin +lon_0=0 +x_0=0 +y_0=0 +datum=WGS84 +units=m +no_defs")) | ||
coast.rob <- spTransform(coast, CRSobj = CRS("+proj=robin +lon_0=0 +x_0=0 +y_0=0 +datum=WGS84 +units=m +no_defs")) | ||
world.contour.rob <- spTransform(world.contour, CRS("+proj=robin +lon_0=0 +x_0=0 +y_0=0 +ellps=WGS84 +datum=WGS84 +units=m +no_defs")) | ||
|
||
hatching.density <- c(rep(3, 4), rep(6, 4)) | ||
uncertainty.sp <- lapply(1:length(uncertainty.grids.rob), function(x) map.hatching(climatology(uncertainty.grids.rob[[x]]), threshold = 0.8, angle = "45", | ||
condition = "LT", density = hatching.density[x], lwd = 0.8, col = "grey40", | ||
upscaling.aggr.fun = list(FUN = mean))) | ||
|
||
|
||
# Set graphic parameters ----------------------------------------------------------------------------------------------------------------------------------------- | ||
legend.bins <- c(-30, -5, -1, 1, 5, 15, 30, 45, 60, 75, 100, 150, 200, 250) | ||
coltheme = "RdBu" | ||
revc <- TRUE | ||
color.palette <- colorRampPalette(brewer.pal(coltheme, n = 10))(22) | ||
titles <- c("(a) TX35 for 2041-2060 (RCP2.6) rel. to 1995-2014", "(b) TX35 for 2081-2100 (RCP2.6) rel. to 1995-2014", | ||
"(c) TX35 for 2041-2060 (RCP8.5) rel. to 1995-2014", "(d) TX35 for 2081-2100 (RCP8.5) rel. to 1995-2014", | ||
"(e) TX35 for 2041-2060 (SSP1-2.6) rel. to 1995-2014", "(f) TX35 for 2081-2100 (SSP1-2.6) rel. to 1995-2014", | ||
"(g) TX35 for 2041-2060 (SSP5-8.5) rel. to 1995-2014", "(h) TX35 for 2081-2100 (SSP5-8.5) rel. to 1995-2014") | ||
|
||
# Plot maps ------------------------------------------------------------------------------------------------------------------------------------------------------ | ||
p <- lapply(1:length(change.grids.rob), function(i) { | ||
spatialPlot(change.grids.rob[[i]], backdrop.theme = "coastline", | ||
col.regions = c(rev(color.palette[c(13, 15)]), "white", rev(color.palette[1:11])), | ||
at = legend.bins, set.max = max(legend.bins), set.min = min(legend.bins), | ||
main = list(titles[i], cex = 0.8), | ||
colorkey = list(width = 1), | ||
sp.layout = list(list(regions.rob, lwd = 0.9, first = F), | ||
list(coast.rob, col = "gray50", lwd = 0.7, first = FALSE), | ||
list(world.contour.rob, first = FALSE), | ||
uncertainty.sp[[i]]), | ||
par.settings = list(axis.line = list(col = 'transparent'))) | ||
}) | ||
|
||
|
||
# Export figure --------------------------------------------------------------------------------------------------------------------------------------------------- | ||
pdf("FigureTS24-columns1-2.pdf", width = 8, height = 10) | ||
do.call("grid.arrange", c(p[c(1,5,2,6,3,7,4,8)], ncol = 2, as.table = T)) | ||
dev.off() | ||
|
||
|
||
|
||
|
||
|