Skip to content

Commit

Permalink
ltt :调通了deeplab, 修改了backbone/mobilenet中的问题,添加了输入batch处理,待完成train,test…
Browse files Browse the repository at this point in the history
…,evaluate模块
  • Loading branch information
Idolphint committed Jan 12, 2020
1 parent efe7dd8 commit d7f8b54
Show file tree
Hide file tree
Showing 20 changed files with 1,810 additions and 3 deletions.
3 changes: 3 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
*.pyc
*.pth
/__pycache__
5 changes: 2 additions & 3 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,3 +1,2 @@
# -BUAA_FRB_-

这里是由阳神带领的冯如小队,完毕!
# FRB_lttprivate
save code of myself
8 changes: 8 additions & 0 deletions deeplab.py
Original file line number Diff line number Diff line change
Expand Up @@ -61,6 +61,14 @@ def get_10x_lr_params(self):
yield p


def getinput():
root_path = "../data20200111/"
img_path = "img/"
fea_path = "feature/"
label_path = "label/"



if __name__ == "__main__":
model = DeepLab(backbone='mobilenet', output_stride=16)
model.eval()
Expand Down
Empty file added modeling/__init__.py
Empty file.
95 changes: 95 additions & 0 deletions modeling/aspp.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,95 @@
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from modeling.sync_batchnorm.batchnorm import SynchronizedBatchNorm2d

class _ASPPModule(nn.Module):
def __init__(self, inplanes, planes, kernel_size, padding, dilation, BatchNorm):
super(_ASPPModule, self).__init__()
self.atrous_conv = nn.Conv2d(inplanes, planes, kernel_size=kernel_size,
stride=1, padding=padding, dilation=dilation, bias=False)
self.bn = BatchNorm(planes)
self.relu = nn.ReLU()

self._init_weight()

def forward(self, x):
x = self.atrous_conv(x)
x = self.bn(x)

return self.relu(x)

def _init_weight(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
torch.nn.init.kaiming_normal_(m.weight)
elif isinstance(m, SynchronizedBatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()

class ASPP(nn.Module):
def __init__(self, backbone, output_stride, BatchNorm):
super(ASPP, self).__init__()
if backbone == 'drn':
inplanes = 512
elif backbone == 'mobilenet':
inplanes = 320
else:
inplanes = 2048
if output_stride == 16:
dilations = [1, 6, 12, 18]
elif output_stride == 8:
dilations = [1, 12, 24, 36]
else:
raise NotImplementedError

self.aspp1 = _ASPPModule(inplanes, 256, 1, padding=0, dilation=dilations[0], BatchNorm=BatchNorm)
self.aspp2 = _ASPPModule(inplanes, 256, 3, padding=dilations[1], dilation=dilations[1], BatchNorm=BatchNorm)
self.aspp3 = _ASPPModule(inplanes, 256, 3, padding=dilations[2], dilation=dilations[2], BatchNorm=BatchNorm)
self.aspp4 = _ASPPModule(inplanes, 256, 3, padding=dilations[3], dilation=dilations[3], BatchNorm=BatchNorm)

self.global_avg_pool = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)),
nn.Conv2d(inplanes, 256, 1, stride=1, bias=False),
BatchNorm(256),
nn.ReLU())
self.conv1 = nn.Conv2d(1280, 256, 1, bias=False)
self.bn1 = BatchNorm(256)
self.relu = nn.ReLU()
self.dropout = nn.Dropout(0.5)
self._init_weight()

def forward(self, x):
x1 = self.aspp1(x)
x2 = self.aspp2(x)
x3 = self.aspp3(x)
x4 = self.aspp4(x)
x5 = self.global_avg_pool(x)
x5 = F.interpolate(x5, size=x4.size()[2:], mode='bilinear', align_corners=True)
x = torch.cat((x1, x2, x3, x4, x5), dim=1)

x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)

return self.dropout(x)

def _init_weight(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
# n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
# m.weight.data.normal_(0, math.sqrt(2. / n))
torch.nn.init.kaiming_normal_(m.weight)
elif isinstance(m, SynchronizedBatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()


def build_aspp(backbone, output_stride, BatchNorm):
return ASPP(backbone, output_stride, BatchNorm)
Binary file added modeling/backbone/.__init__.py.swp
Binary file not shown.
Binary file added modeling/backbone/.mobilenet.py.swp
Binary file not shown.
13 changes: 13 additions & 0 deletions modeling/backbone/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,13 @@
from modeling.backbone import resnet, xception, drn, mobilenet

def build_backbone(backbone, output_stride, BatchNorm):
if backbone == 'resnet':
return resnet.ResNet101(output_stride, BatchNorm)
elif backbone == 'xception':
return xception.AlignedXception(output_stride, BatchNorm)
elif backbone == 'drn':
return drn.drn_d_54(BatchNorm)
elif backbone == 'mobilenet':
return mobilenet.MobileNetV2(output_stride, BatchNorm)
else:
raise NotImplementedError
Loading

0 comments on commit d7f8b54

Please sign in to comment.