Skip to content

Commit

Permalink
.
Browse files Browse the repository at this point in the history
  • Loading branch information
IgorKohan committed Apr 16, 2021
1 parent 79eebbe commit 0557971
Showing 1 changed file with 4 additions and 4 deletions.
8 changes: 4 additions & 4 deletions src/ReproducingKernels.jl
Original file line number Diff line number Diff line change
Expand Up @@ -89,7 +89,7 @@ end
ξ::Vector{T}
) where {T <: AbstractFloat, RK <: ReproducingKernel_0}
defined::Bool = false
x::T = kernel.ε * sqrt(sum((ξ - η) .^ 2))
x::T = kernel.ε * norm(ξ - η)
if isa(kernel, RK_H2)
defined = true
value = (T(3.0) + x * (T(3.0) + x)) * exp(-x)
Expand Down Expand Up @@ -140,7 +140,7 @@ end
# Note: Derivative of spline built with reproducing kernel RK_H0 does not exist at the spline nodes.
value::T = T(0.0)
defined::Bool = false
normt = sqrt(sum((η - ξ) .^ 2))
normt = norm(η - ξ)
x = kernel.ε * normt
if isa(kernel, RK_H2)
defined = true
Expand Down Expand Up @@ -173,7 +173,7 @@ end
defined::Bool = false
if isa(kernel, RK_H2)
defined = true
x = kernel.ε * sqrt(sum((η - ξ) .^ 2))
x = kernel.ε * norm(η - ξ)
if r == k
if x > T(0.0)
value = kernel.ε^2 * exp(-x) * (T(1.0) + x - (kernel.ε * (ξ[r] - η[r]))^2)
Expand All @@ -190,7 +190,7 @@ end
end
if isa(kernel, RK_H1)
defined = true
t = sqrt(sum((η - ξ) .^ 2))
t = norm(η - ξ)
x = kernel.ε * t
if r == k
if t > T(0.0)
Expand Down

0 comments on commit 0557971

Please sign in to comment.