Skip to content

Commit

Permalink
First attempt
Browse files Browse the repository at this point in the history
  • Loading branch information
WilliamCoram committed Dec 4, 2024
1 parent b520821 commit 176751c
Showing 1 changed file with 50 additions and 5 deletions.
55 changes: 50 additions & 5 deletions FLT/DedekindDomain/FiniteAdeleRing/BaseChange.lean
Original file line number Diff line number Diff line change
Expand Up @@ -436,11 +436,56 @@ variable [Algebra K (FiniteAdeleRing B L)]
noncomputable def FiniteAdeleRing.baseChange : FiniteAdeleRing A K →ₐ[K] FiniteAdeleRing B L where
toFun ak := ⟨ProdAdicCompletions.baseChange A K L B ak.1,
(ProdAdicCompletions.baseChange_isFiniteAdele_iff A K L B ak).1 ak.2
map_one' := sorry
map_mul' := sorry
map_zero' := sorry
map_add' := sorry
commutes' := sorry
map_one' := by
refine ext B L ?_
have h : (1 : FiniteAdeleRing A K) = (1 : ProdAdicCompletions A K) := rfl
have t : (1 : FiniteAdeleRing B L) = (1 : ProdAdicCompletions B L) := rfl
simp_rw [h,t]
simp only [map_one]
map_mul' := by
intro x y
have h : (x * y : FiniteAdeleRing A K) =
(x : ProdAdicCompletions A K) * (y : ProdAdicCompletions A K) := rfl
simp_rw [h]
simp only [map_mul]
rfl
map_zero' := by
refine ext B L ?_
have h : (0 : FiniteAdeleRing A K) = (0 : ProdAdicCompletions A K) := rfl
have t : (0 : FiniteAdeleRing B L) = (0 : ProdAdicCompletions B L) := rfl
simp_rw [h,t]
simp only [map_zero]
map_add' := by
intro x y
have h : (x+y : FiniteAdeleRing A K) =
(x : ProdAdicCompletions A K) + (y : ProdAdicCompletions A K) := rfl
simp_rw [h]
simp only [map_add]
rfl
commutes' := by
intro r
refine ext B L ?_
have h : (((algebraMap K (FiniteAdeleRing A K)) r) : ProdAdicCompletions A K) =
(algebraMap K (ProdAdicCompletions A K)) r := rfl
simp_rw [h]
simp only [AlgHom.commutes]
have i : algebraMap K (FiniteAdeleRing B L) r =
algebraMap L (FiniteAdeleRing B L) (algebraMap K L r) := by
exact IsScalarTower.algebraMap_apply K L (FiniteAdeleRing B L) r
simp_rw [i]
have j (p : L): (((algebraMap L (FiniteAdeleRing B L)) p) : ProdAdicCompletions B L) =
(algebraMap L (ProdAdicCompletions B L)) p := rfl
simp_rw [j]
exact IsScalarTower.algebraMap_apply K L (ProdAdicCompletions B L) r


-- How can I coerce r into L - without using algebraMap?
-- this is cleary true, just need to show it






-- Presumably we have this?
noncomputable def bar {K L AK AL : Type*} [CommRing K] [CommRing L]
Expand Down

0 comments on commit 176751c

Please sign in to comment.