Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

chore: rename modularHaarChar to distribHaarChar #263

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions FLT/FLT_files.lean
Original file line number Diff line number Diff line change
Expand Up @@ -7,15 +7,15 @@ import FLT.DivisionAlgebra.Finiteness
import FLT.EllipticCurve.Torsion
import FLT.ForMathlib.ActionTopology
import FLT.ForMathlib.Algebra
import FLT.ForMathlib.DomMulActMeasure
import FLT.ForMathlib.MiscLemmas
import FLT.FromMathlib.Algebra
import FLT.GaloisRepresentation.Cyclotomic
import FLT.GaloisRepresentation.HardlyRamified
import FLT.GlobalLanglandsConjectures.GLnDefs
import FLT.GlobalLanglandsConjectures.GLzero
import FLT.GroupScheme.FiniteFlat
import FLT.HaarMeasure.Map
import FLT.HaarMeasure.ModularCharacter
import FLT.HaarMeasure.DistribHaarChar
import FLT.Hard.Results
import FLT.HIMExperiments.flatness
import FLT.MathlibExperiments.Coalgebra.Monoid
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -12,8 +12,8 @@ namespace MeasureTheory.Measure
variable {G A : Type*} [Group G] [AddCommGroup A] [DistribMulAction G A]
[MeasurableSpace A]
[MeasurableSpace G] -- not needed actually
[MeasurableSMul G A] -- only need `MeasurableConstSMul` but we don't have this class.
variable (μ ν : Measure A)
[MeasurableSMul G A] -- We only need `MeasurableConstSMul` but we don't have this class.
variable {μ ν : Measure A} {g : G}

noncomputable
instance : DistribMulAction Gᵈᵐᵃ (Measure A) where
Expand All @@ -33,7 +33,7 @@ instance : DistribMulAction Gᵈᵐᵃ (Measure A) where
rw [Measure.map_add]
exact measurable_const_smul ..

lemma dma_smul_apply (g : Gᵈᵐᵃ) (s : Set A) :
lemma dma_smul_apply (μ : Measure A) (g : Gᵈᵐᵃ) (s : Set A) :
(g • μ) s = μ ((DomMulAct.mk.symm g) • s) := by
refine ((MeasurableEquiv.smul ((DomMulAct.mk.symm g : G)⁻¹)).map_apply _).trans ?_
congr 1
Expand All @@ -47,9 +47,7 @@ variable [TopologicalSpace A] [BorelSpace A] [TopologicalAddGroup A] [LocallyCom
[ContinuousConstSMul G A] [μ.IsAddHaarMeasure] [ν.IsAddHaarMeasure]

instance : SMulCommClass ℝ≥0 Gᵈᵐᵃ (Measure A) where
smul_comm r g μ := by
show r • μ.map _ = (r • μ).map _
simp
smul_comm r g μ := show r • μ.map _ = (r • μ).map _ by simp

instance : SMulCommClass Gᵈᵐᵃ ℝ≥0 (Measure A) := .symm ..

Expand All @@ -60,6 +58,7 @@ instance (g : Gᵈᵐᵃ) : (g • μ).IsAddHaarMeasure :=
(DistribMulAction.toAddEquiv _ (DomMulAct.mk.symm g⁻¹)).isAddHaarMeasure_map _
(continuous_const_smul _) (continuous_const_smul _)

variable (μ ν) in
lemma addHaarScalarFactor_dma_smul (g : Gᵈᵐᵃ) :
addHaarScalarFactor (g • μ) (g • ν) = addHaarScalarFactor μ ν := by
obtain ⟨⟨f, f_cont⟩, f_comp, f_nonneg, f_zero⟩ :
Expand All @@ -74,44 +73,8 @@ lemma addHaarScalarFactor_dma_smul (g : Gᵈᵐᵃ) :
· rw [← integral_dma_smul]
exact (f_cont.integral_pos_of_hasCompactSupport_nonneg_nonzero f_comp f_nonneg f_zero).ne'

variable (μ) in
lemma addHaarScalarFactor_smul_congr (g : Gᵈᵐᵃ) :
addHaarScalarFactor μ (g • μ) = addHaarScalarFactor ν (g • ν) := by
rw [addHaarScalarFactor_eq_mul _ (g • ν), addHaarScalarFactor_dma_smul,
mul_comm, ← addHaarScalarFactor_eq_mul]

variable (A) in
@[simps (config := .lemmasOnly)]
noncomputable def modularHaarChar : G →* ℝ≥0 where
toFun g := addHaarScalarFactor (addHaar (G := A)) (DomMulAct.mk g • addHaar)
map_one' := by simp
map_mul' g g' := by
simp
rw [addHaarScalarFactor_eq_mul _ (DomMulAct.mk g • addHaar (G := A))]
congr 1
simp_rw [mul_smul]
exact addHaarScalarFactor_smul_congr ..

lemma addHaarScalarFactor_smul_eq_modularHaarChar (g : G) :
addHaarScalarFactor μ (DomMulAct.mk g • μ) = modularHaarChar A g :=
addHaarScalarFactor_smul_congr ..

lemma addHaarScalarFactor_smul_inv_eq_modularHaarChar (g : G) :
addHaarScalarFactor ((DomMulAct.mk g)⁻¹ • μ) μ = modularHaarChar A g := by
rw [← addHaarScalarFactor_dma_smul _ _ (DomMulAct.mk g)]
simp_rw [← mul_smul, mul_inv_cancel, one_smul]
exact addHaarScalarFactor_smul_eq_modularHaarChar ..

lemma addHaarScalarFactor_smul_eq_modularHaarChar_inv (g : G) :
addHaarScalarFactor (DomMulAct.mk g • μ) μ = (modularHaarChar A g)⁻¹ := by
rw [← map_inv, ← addHaarScalarFactor_smul_inv_eq_modularHaarChar μ, DomMulAct.mk_inv, inv_inv]

variable (A) in
lemma modularHaarChar_pos (g : G) : 0 < modularHaarChar A g :=
pos_iff_ne_zero.mpr ((Group.isUnit g).map (modularHaarChar A)).ne_zero

lemma modularHaarChar_smul [IsFiniteMeasureOnCompacts μ] [Regular μ] (g : G) {s : Set A} :
modularHaarChar A g • μ s = μ (g⁻¹ • s) := by
have : (DomMulAct.mk g⁻¹ • μ) s = μ (g⁻¹ • s) := by simp [dma_smul_apply]
rw [eq_comm, ← inv_smul_eq_iff₀ (modularHaarChar_pos A g).ne', ← map_inv,
← addHaarScalarFactor_smul_eq_modularHaarChar μ,
← this, ← smul_apply, ← isAddLeftInvariant_eq_smul_of_regular μ (DomMulAct.mk g⁻¹ • μ)]
80 changes: 80 additions & 0 deletions FLT/HaarMeasure/DistribHaarChar.lean
Original file line number Diff line number Diff line change
@@ -0,0 +1,80 @@
/-
Copyright (c) 2024 Andrew Yang, Yaël Dillies, Javier López-Contreras. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang, Yaël Dillies, Javier López-Contreras
-/
import FLT.Mathlib.Data.ENNReal.Inv
import FLT.ForMathlib.DomMulActMeasure

/-!
# The distributive character of Haar measures

Given a group `G` acting on an measurable additive commutative group `A`, and an element `g : G`,
one can pull back the Haar measure `μ` of `A` along the map `(g • ·) : A → A` to get another Haar
measure `μ'` on `A`. By unicity of Haar measures, there exists some nonnegative real number `r` such
that `μ' = r • μ`. We can thus define a map `distribHaarChar : G → ℝ≥0` sending `g` to its
associated real number `r`. Furthermore, this number doesn't depend on the Haar measure `μ` we
started with, and `distribHaarChar` is a group homomorphism.

## See also

[Zulip](https://leanprover.zulipchat.com/#narrow/channel/217875-Is-there-code-for-X.3F/topic/canonical.20norm.20coming.20from.20Haar.20measure/near/480050592)
-/

open scoped NNReal Pointwise ENNReal

namespace MeasureTheory.Measure

variable {G A : Type*} [Group G] [AddCommGroup A] [DistribMulAction G A]
[MeasurableSpace A]
[MeasurableSpace G] -- not needed actually
[MeasurableSMul G A] -- only need `MeasurableConstSMul` but we don't have this class.
variable {μ ν : Measure A} {g : G}

variable [TopologicalSpace A] [BorelSpace A] [TopologicalAddGroup A] [LocallyCompactSpace A]
[ContinuousConstSMul G A] [μ.IsAddHaarMeasure] [ν.IsAddHaarMeasure]

variable (μ A) in
@[simps (config := .lemmasOnly)]
noncomputable def distribHaarChar : G →* ℝ≥0 where
toFun g := addHaarScalarFactor (addHaar (G := A)) (DomMulAct.mk g • addHaar)
map_one' := by simp
map_mul' g g' := by
simp
rw [addHaarScalarFactor_eq_mul _ (DomMulAct.mk g • addHaar (G := A))]
congr 1
simp_rw [mul_smul]
exact addHaarScalarFactor_smul_congr ..

variable (μ) in
lemma addHaarScalarFactor_smul_eq_distribHaarChar (g : G) :
addHaarScalarFactor μ (DomMulAct.mk g • μ) = distribHaarChar A g :=
addHaarScalarFactor_smul_congr ..

variable (μ) in
lemma addHaarScalarFactor_smul_inv_eq_distribHaarChar (g : G) :
addHaarScalarFactor ((DomMulAct.mk g)⁻¹ • μ) μ = distribHaarChar A g := by
rw [← addHaarScalarFactor_dma_smul _ _ (DomMulAct.mk g)]
simp_rw [← mul_smul, mul_inv_cancel, one_smul]
exact addHaarScalarFactor_smul_eq_distribHaarChar ..

variable (μ) in
lemma addHaarScalarFactor_smul_eq_distribHaarChar_inv (g : G) :
addHaarScalarFactor (DomMulAct.mk g • μ) μ = (distribHaarChar A g)⁻¹ := by
rw [← map_inv, ← addHaarScalarFactor_smul_inv_eq_distribHaarChar μ, DomMulAct.mk_inv, inv_inv]

lemma distribHaarChar_pos : 0 < distribHaarChar A g :=
pos_iff_ne_zero.mpr ((Group.isUnit g).map (distribHaarChar A)).ne_zero

variable [IsFiniteMeasureOnCompacts μ] [Regular μ] {s : Set A}

variable (μ) in
lemma distribHaarChar_mul (g : G) (s : Set A) : distribHaarChar A g * μ s = μ (g⁻¹ • s) := by
have : (DomMulAct.mk g⁻¹ • μ) s = μ (g⁻¹ • s) := by simp [dma_smul_apply]
rw [eq_comm, ← nnreal_smul_coe_apply, ← inv_smul_eq_iff₀ distribHaarChar_pos.ne', ← map_inv,
← addHaarScalarFactor_smul_eq_distribHaarChar μ,
← this, ← smul_apply, ← isAddLeftInvariant_eq_smul_of_regular μ (DomMulAct.mk g⁻¹ • μ)]

lemma distribHaarChar_eq_div (hs₀ : μ s ≠ 0) (hs : μ s ≠ ∞) (g : G) :
distribHaarChar A g = μ (g⁻¹ • s) / μ s := by
rw [← distribHaarChar_mul, ENNReal.mul_div_cancel_right hs₀ hs]
35 changes: 0 additions & 35 deletions FLT/HaarMeasure/Map.lean

This file was deleted.

8 changes: 8 additions & 0 deletions FLT/Mathlib/Data/ENNReal/Inv.lean
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
import Mathlib.Data.ENNReal.Inv

namespace ENNReal

protected lemma mul_div_cancel_right {b : ℝ≥0∞} (hb₀ : b ≠ 0) (hb : b ≠ ∞) (a : ℝ≥0∞) :
a * b / b = a := by rw [ENNReal.mul_div_right_comm, ENNReal.div_mul_cancel hb₀ hb]

end ENNReal