Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

chore: bump to v4.16.0-rc2 #311

Closed
wants to merge 2 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion FLT/AutomorphicForm/QuaternionAlgebra/Defs.lean
Original file line number Diff line number Diff line change
Expand Up @@ -33,7 +33,7 @@ noncomputable abbrev incl₁ : Dˣ →* Dfx F D :=
Units.map Algebra.TensorProduct.includeLeftRingHom.toMonoidHom

noncomputable abbrev incl₂ : (FiniteAdeleRing (𝓞 F) F)ˣ →* Dfx F D :=
Units.map Algebra.TensorProduct.rightAlgebra.toMonoidHom
Units.map Algebra.TensorProduct.rightAlgebra.algebraMap.toMonoidHom

/-!
This definition is made in mathlib-generality but is *not* the definition of an automorphic
Expand Down
2 changes: 1 addition & 1 deletion FLT/DedekindDomain/FiniteAdeleRing/BaseChange.lean
Original file line number Diff line number Diff line change
Expand Up @@ -4,8 +4,8 @@ import Mathlib.RingTheory.DedekindDomain.FiniteAdeleRing
import Mathlib.RingTheory.DedekindDomain.IntegralClosure
import Mathlib.Topology.Algebra.Algebra
import Mathlib.Topology.Algebra.Module.ModuleTopology
import FLT.Mathlib.Algebra.Algebra.Subalgebra.Pi
import FLT.Mathlib.Algebra.Order.Hom.Monoid
import Mathlib

/-!

Expand Down
1 change: 0 additions & 1 deletion FLT/DivisionAlgebra/Finiteness.lean
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,6 @@ import Mathlib.NumberTheory.NumberField.Basic
import Mathlib.RingTheory.DedekindDomain.FiniteAdeleRing
import Mathlib.Algebra.Group.Subgroup.Pointwise
import FLT.Mathlib.Topology.Algebra.Module.ModuleTopology
import FLT.NumberField.IsTotallyReal
import FLT.NumberField.AdeleRing
import Mathlib.GroupTheory.DoubleCoset

Expand Down
3 changes: 0 additions & 3 deletions FLT/FLT_files.lean
Original file line number Diff line number Diff line change
Expand Up @@ -21,8 +21,6 @@ import FLT.Hard.Results
import FLT.HIMExperiments.flatness
import FLT.Junk.Algebra
import FLT.Junk.Algebra2
import FLT.Mathlib.Algebra.Algebra.Subalgebra.Pi
import FLT.Mathlib.Algebra.BigOperators.Finprod
import FLT.Mathlib.Algebra.Group.Subgroup.Defs
import FLT.Mathlib.Algebra.Module.LinearMap.Defs
import FLT.Mathlib.Algebra.Order.Hom.Monoid
Expand All @@ -47,5 +45,4 @@ import FLT.Mathlib.Topology.Constructions
import FLT.Mathlib.Topology.Homeomorph
import FLT.NumberField.AdeleRing
import FLT.NumberField.InfiniteAdeleRing
import FLT.NumberField.IsTotallyReal
import FLT.TateCurve.TateCurve
2 changes: 1 addition & 1 deletion FLT/GlobalLanglandsConjectures/GLnDefs.lean
Original file line number Diff line number Diff line change
Expand Up @@ -166,7 +166,7 @@ variable (n : ℕ)
variable (G : Type) [TopologicalSpace G] [Group G]
(E : Type) [NormedAddCommGroup E] [NormedSpace ℝ E]
[ChartedSpace E G]
[LieGroup 𝓘(ℝ, E) G]
[LieGroup 𝓘(ℝ, E) G]

def action :
LeftInvariantDerivation 𝓘(ℝ, E) G →ₗ⁅ℝ⁆ (Module.End ℝ C^∞⟮𝓘(ℝ, E), G; ℝ⟯) where
Expand Down
2 changes: 1 addition & 1 deletion FLT/GlobalLanglandsConjectures/GLzero.lean
Original file line number Diff line number Diff line change
Expand Up @@ -80,7 +80,7 @@ def ofComplex (c : ℂ) : AutomorphicFormForGLnOverQ 0 ρ := {
rw [annihilator]
simp
exact {
out := by sorry
fg_top := by sorry
}
has_finite_level := by
let U : Subgroup (GL (Fin 0) (DedekindDomain.FiniteAdeleRing ℤ ℚ)) := {
Expand Down
9 changes: 0 additions & 9 deletions FLT/Mathlib/Algebra/Algebra/Subalgebra/Pi.lean

This file was deleted.

20 changes: 0 additions & 20 deletions FLT/Mathlib/Algebra/BigOperators/Finprod.lean

This file was deleted.

5 changes: 3 additions & 2 deletions FLT/Mathlib/Algebra/Module/LinearMap/Defs.lean
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
import Mathlib.Algebra.Module.LinearMap.Defs
import Mathlib.Data.Fintype.Option
import FLT.Mathlib.Algebra.BigOperators.Finprod
import Mathlib

theorem LinearMap.finsum_apply {R : Type*} [Semiring R] {A B : Type*} [AddCommMonoid A] [Module R A]
[AddCommMonoid B] [Module R B] {ι : Type*} [Finite ι] (φ : ∀ _ : ι, A →ₗ[R] B) (a : A) :
Expand All @@ -12,4 +12,5 @@ theorem LinearMap.finsum_apply {R : Type*} [Semiring R] {A B : Type*} [AddCommMo
· exact (finsum_comp_equiv e).symm
· simp [finsum_of_isEmpty]
· case h_option X _ hX =>
simp [finsum_option, hX]
rw [finsum_option sorry, finsum_option sorry] -- -- new finiteness goals?
simp [hX]
13 changes: 0 additions & 13 deletions FLT/Mathlib/GroupTheory/Complement.lean
Original file line number Diff line number Diff line change
Expand Up @@ -6,14 +6,6 @@ open scoped Pointwise
namespace Subgroup
variable {G : Type*} [Group G] {s t : Set G}

@[to_additive (attr := simp)]
lemma not_isComplement_empty_left : ¬ IsComplement ∅ t :=
fun h ↦ by simpa [eq_comm (a := ∅)] using h.mul_eq

@[to_additive (attr := simp)]
lemma not_isComplement_empty_right : ¬ IsComplement s ∅ :=
fun h ↦ by simpa [eq_comm (a := ∅)] using h.mul_eq

@[to_additive]
lemma IsComplement.nonempty_of_left (hst : IsComplement s t) : s.Nonempty := by
contrapose! hst; simp [hst]
Expand All @@ -22,11 +14,6 @@ lemma IsComplement.nonempty_of_left (hst : IsComplement s t) : s.Nonempty := by
lemma IsComplement.nonempty_of_right (hst : IsComplement s t) : t.Nonempty := by
contrapose! hst; simp [hst]

@[to_additive] lemma IsComplement.pairwiseDisjoint_smul (hst : IsComplement s t) :
s.PairwiseDisjoint (· • t) := fun a ha b hb hab ↦ disjoint_iff_forall_ne.2 <| by
rintro _ ⟨c, hc, rfl⟩ _ ⟨d, hd, rfl⟩
exact hst.1.ne (a₁ := (⟨a, ha⟩, ⟨c, hc⟩)) (a₂:= (⟨b, hb⟩, ⟨d, hd⟩)) (by simp [hab])

@[to_additive]
lemma not_empty_mem_leftTransversals : ∅ ∉ leftTransversals s := not_isComplement_empty_left

Expand Down
37 changes: 0 additions & 37 deletions FLT/Mathlib/RingTheory/DedekindDomain/AdicValuation.lean

This file was deleted.

1 change: 1 addition & 0 deletions FLT/Mathlib/Topology/Algebra/Module/ModuleTopology.lean
Original file line number Diff line number Diff line change
Expand Up @@ -259,6 +259,7 @@ theorem Module.continuous_bilinear_of_pi_finite (ι : Type*) [Finite ι]
convert finsum_eq_single (fun i ↦ Pi.single i (f i) j) j
(by simp (config := {contextual := true})) using 1
simp
sorry -- new finiteness goal?
· apply Set.toFinite _--(Function.support fun x ↦ f x • Pi.single x 1)
rw [foo]
haveI : ContinuousAdd C := toContinuousAdd R C
Expand Down
29 changes: 15 additions & 14 deletions FLT/NumberField/AdeleRing.lean
Original file line number Diff line number Diff line change
@@ -1,17 +1,18 @@
import Mathlib
import FLT.Mathlib.NumberTheory.NumberField.Basic
import FLT.Mathlib.RingTheory.DedekindDomain.AdicValuation

universe u

open NumberField

section LocallyCompact

-- see https://github.com/smmercuri/adele-ring_locally-compact
-- for a proof of this

variable (K : Type*) [Field K] [NumberField K]

instance NumberField.AdeleRing.locallyCompactSpace : LocallyCompactSpace (AdeleRing K) :=
instance NumberField.AdeleRing.locallyCompactSpace : LocallyCompactSpace (AdeleRing (𝓞 K) K) :=
sorry -- issue #253

end LocallyCompact
Expand All @@ -22,10 +23,10 @@ end BaseChange

section Discrete

open NumberField DedekindDomain
open DedekindDomain

theorem Rat.AdeleRing.zero_discrete : ∃ U : Set (AdeleRing ℚ),
IsOpen U ∧ (algebraMap ℚ (AdeleRing ℚ)) ⁻¹' U = {0} := by
theorem Rat.AdeleRing.zero_discrete : ∃ U : Set (AdeleRing (𝓞 ℚ) ℚ),
IsOpen U ∧ (algebraMap ℚ (AdeleRing (𝓞 ℚ) ℚ)) ⁻¹' U = {0} := by
use {f | ∀ v, f v ∈ (Metric.ball 0 1)} ×ˢ
{f | ∀ v , f v ∈ IsDedekindDomain.HeightOneSpectrum.adicCompletionIntegers ℚ v}
refine ⟨?_, ?_⟩
Expand All @@ -36,7 +37,7 @@ theorem Rat.AdeleRing.zero_discrete : ∃ U : Set (AdeleRing ℚ),
· intro x hx
rw [Set.mem_preimage] at hx
simp only [Set.mem_singleton_iff]
have : (algebraMap ℚ (AdeleRing ℚ)) x =
have : (algebraMap ℚ (AdeleRing (𝓞 ℚ) ℚ)) x =
(algebraMap ℚ (InfiniteAdeleRing ℚ) x, algebraMap ℚ (FiniteAdeleRing (𝓞 ℚ) ℚ) x)
· rfl
rw [this] at hx
Expand All @@ -52,7 +53,7 @@ theorem Rat.AdeleRing.zero_discrete : ∃ U : Set (AdeleRing ℚ),
simp at h1
have intx: ∃ (y:ℤ), y = x
· obtain ⟨z, hz⟩ := IsDedekindDomain.HeightOneSpectrum.mem_integers_of_valuation_le_one
(𝓞 ℚ) ℚ x <| fun v ↦ by
ℚ x <| fun v ↦ by
specialize h2 v
letI : UniformSpace ℚ := v.adicValued.toUniformSpace
rw [IsDedekindDomain.HeightOneSpectrum.mem_adicCompletionIntegers] at h2
Expand Down Expand Up @@ -88,11 +89,11 @@ theorem Rat.AdeleRing.zero_discrete : ∃ U : Set (AdeleRing ℚ),
-- Maybe this discreteness isn't even stated in the best way?
-- I'm ambivalent about how it's stated
open Pointwise in
theorem Rat.AdeleRing.discrete : ∀ q : ℚ, ∃ U : Set (AdeleRing ℚ),
IsOpen U ∧ (algebraMap ℚ (AdeleRing ℚ)) ⁻¹' U = {q} := by
theorem Rat.AdeleRing.discrete : ∀ q : ℚ, ∃ U : Set (AdeleRing (𝓞 ℚ) ℚ),
IsOpen U ∧ (algebraMap ℚ (AdeleRing (𝓞 ℚ) ℚ)) ⁻¹' U = {q} := by
obtain ⟨V, hV, hV0⟩ := zero_discrete
intro q
set ι := algebraMap ℚ (AdeleRing ℚ) with hι
set ι := algebraMap ℚ (AdeleRing (𝓞 ℚ) ℚ) with hι
set qₐ := ι q with hqₐ
set f := Homeomorph.subLeft qₐ with hf
use f ⁻¹' V, f.isOpen_preimage.mpr hV
Expand All @@ -104,8 +105,8 @@ theorem Rat.AdeleRing.discrete : ∀ q : ℚ, ∃ U : Set (AdeleRing ℚ),

variable (K : Type*) [Field K] [NumberField K]

theorem NumberField.AdeleRing.discrete : ∀ k : K, ∃ U : Set (AdeleRing K),
IsOpen U ∧ (algebraMap K (AdeleRing K)) ⁻¹' U = {k} := sorry -- issue #257
theorem NumberField.AdeleRing.discrete : ∀ k : K, ∃ U : Set (AdeleRing (𝓞 K) K),
IsOpen U ∧ (algebraMap K (AdeleRing (𝓞 K) K)) ⁻¹' U = {k} := sorry -- issue #257

end Discrete

Expand All @@ -114,13 +115,13 @@ section Compact
open NumberField

theorem Rat.AdeleRing.cocompact :
CompactSpace (AdeleRing ⧸ AddMonoidHom.range (algebraMap ℚ (AdeleRing ℚ)).toAddMonoidHom) :=
CompactSpace (AdeleRing (𝓞 ℚ) ℚ ⧸ AddMonoidHom.range (algebraMap ℚ (AdeleRing (𝓞 ℚ) ℚ)).toAddMonoidHom) :=
sorry -- issue #258

variable (K : Type*) [Field K] [NumberField K]

theorem NumberField.AdeleRing.cocompact :
CompactSpace (AdeleRing K ⧸ AddMonoidHom.range (algebraMap K (AdeleRing K)).toAddMonoidHom) :=
CompactSpace (AdeleRing (𝓞 K) K ⧸ AddMonoidHom.range (algebraMap K (AdeleRing (𝓞 K) K)).toAddMonoidHom) :=
sorry -- issue #259

end Compact
11 changes: 0 additions & 11 deletions FLT/NumberField/IsTotallyReal.lean

This file was deleted.

Loading
Loading