-
Notifications
You must be signed in to change notification settings - Fork 0
/
Nap.mod
64 lines (50 loc) · 1.48 KB
/
Nap.mod
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
COMMENT
Take from Kim (2017). Obtained from ModelDB (McDougal et al., 2017; accession number 235769)
- Kim, H. (2017). Muscle length-dependent contribution of motoneuron Cav1.3 channels to force production in model slow motor unit. Journal of Applied Physiology, 123(1). https://doi.org/10.1152/japplphysiol.00491.2016
- McDougal, R. A., Morse, T. M., Carnevale, T., Marenco, L., Wang, R., Migliore, M., Miller, P. L., Shepherd, G. M., & Hines, M. L. (2017). Twenty years of ModelDB and beyond: building essential modeling tools for the future of neuroscience. In Journal of Computational Neuroscience (Vol. 42, Issue 1). https://doi.org/10.1007/s10827-016-0623-7
ENDCOMMENT
TITLE Persistent Sodium Channel
NEURON {
SUFFIX Nap
USEION na READ ena WRITE ina
RANGE gnapbar, ina, g, i
}
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(S) = (siemens)
}
PARAMETER {
gnapbar =0.0008 (mho/cm2) <0,1e9>
}
ASSIGNED {
v (mV)
ena (mv)
ina (mA/cm2)
i (mA/cm2)
g (S/cm2)
minf mtau
}
STATE {
m
}
BREAKPOINT {
SOLVE states METHOD cnexp
g = gnapbar * m * m * m
i = g * (v - ena)
ina = i
}
INITIAL { :Assume v has been constant for a long time
rates(v)
m = minf
}
DERIVATIVE states { :Computes state variable m and h at present v & t
rates(v)
m' = (minf - m)/mtau
}
PROCEDURE rates(v(mV)) {LOCAL a, b
a = (-0.0353*(v+21.4))/(exp(-(v+21.4)/5)-1)
b = (0.000883*(v+25.7))/(exp((v+25.7)/5)-1)
mtau = 1/(a + b)
minf = a/(a + b)
}