Proof-of-concept implementation using sagemath.
-
Ensure you have the following files:
-
algorithms.py
; -
TestTheorem1.py
; -
TestTheorem2.py
; -
TestLemma2.py
; -
TestLemma3.py
; and -
TestRemark7.py
. -
Sagemath installed
-
MSolve library installed
The scripts require as argument inputs:
- the matrix dimension
n
, - Groebner basis flag (optional),
- number of samples flag (optional),
- a verbose flag (optional). A single example is excutated in verbose mode.
More precisely,
Parses command.
options:
-h, --help show this help message and exit
-n DIMENSION, --dimension DIMENSION
Matrix dimension: n-by-n matrices
-gb, --groebner_basis
Groebner basis approach
-v, --verbose verbose help
-r NUMBER_OF_SAMPLES, --number_of_samples NUMBER_OF_SAMPLES
Number of samples to be used in the Groebner basis approach
Just run (for example):
# Linearization approach
% sage -python TestTheorem1.py -n 16 --verbose
% sage -python TestLemma2.py -n 16 --verbose
% sage -python TestLemma3.py -n 16 --verbose
% sage -python TestRemark7.py -n 16 --verbose
# Groebner basis approach
% sage -python TestTheorem1.py -n 16 -gb --verbose
% sage -python TestTheorem2.py -n 16 --verbose
% sage -python TestLemma2.py -n 16 -gb --verbose
% sage -python TestLemma3.py -n 16 -gb --verbose
% sage -python TestRemark7.py -n 16 -gb --verbose
Just run (for example):
# Linearization approach
% sage -python TestTheorem1.py -n 8
% sage -python TestLemma2.py -n 8
% sage -python TestLemma3.py -n 8
% sage -python TestRemark7.py -n 8
# Groebner basis approach
% sage -python TestTheorem2.py -n 8
% sage -python TestLemma2.py -n 8 -gb
% sage -python TestLemma3.py -n 8 -gb
% sage -python TestRemark7.py -n 8 -gb
Apache License Version 2.0, January 2004