Skip to content

Commit

Permalink
Update documentation
Browse files Browse the repository at this point in the history
  • Loading branch information
JSchoeberl committed Mar 11, 2024
1 parent 320437d commit 90129d6
Show file tree
Hide file tree
Showing 17 changed files with 39 additions and 212 deletions.
Binary file added _images/picproject.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added _images/picture.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
3 changes: 2 additions & 1 deletion _sources/abstracttheory/BasicProperties.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -186,6 +186,7 @@
"metadata": {},
"source": [
"**Lemma:** Let $S$ be a subspace (not necessarily closed) of $V$. Then\n",
"\n",
"$$\n",
"S^\\bot := \\{ v \\in V : (v,w) = 0 \\; \\forall \\, w \\in S \\}\n",
"$$\n",
Expand Down Expand Up @@ -243,7 +244,7 @@
"and let $W$ be a complete space. Let $T : S \\rightarrow W$ be a bounded linear operator \n",
"with respect to the norm $\\| T \\|_{V \\rightarrow W}$. Then, the operator can be uniquely extended onto $V$.\n",
"\n",
"*Proof:* Let $u \\in V$, and let $v_n$ be a sequence such that $v_n \\rightarrow u$. Thus, $v_n$ is Cauchy. $T v_n$ is a well defined sequence in $W$. Since $T$ is continuous, $T v_n$ is also Cauchy. Since $W$ is complete, there exists a limit $w$ such that $T v_n \\rightarrow w$. The limit is independent of the sequence, and thus $T u$ can be defined as the limit $w$."
"*Proof:* Let $u \\in V$, and let $v_n$ be a sequence in $S$ such that $v_n \\rightarrow u$. Thus, $v_n$ is Cauchy. $T v_n$ is a well defined sequence in $W$. Since $T$ is bounded, $T v_n$ is also Cauchy. Since $W$ is complete, there exists a limit $w$ such that $T v_n \\rightarrow w$. The limit is independent of the sequence, and thus $T u$ can be defined as the limit $w$."
]
},
{
Expand Down
2 changes: 1 addition & 1 deletion _sources/abstracttheory/exercises.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -133,7 +133,7 @@
"metadata": {},
"source": [
"## One sup is enough\n",
"Let $A(.,.)$ be a continuous and symmetric bilinear-form on the Hilbert-space $V$. Proof that\n",
"Let $A(.,.)$ be a continuous and symmetric bilinear-form on the Hilbert-space $V$. Prove that\n",
"\n",
"$$\n",
"\\sup_{x \\in V} \\sup_{y \\in V} \\frac{A(x,y)}{\\| x \\| \\, \\| y \\| } =\n",
Expand Down
28 changes: 21 additions & 7 deletions _sources/abstracttheory/subspaceprojection.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@
},
{
"cell_type": "markdown",
"id": "bcbfab77-338a-47d8-aa0f-20054cdc5a0c",
"id": "09f3026f-87bd-47e7-956c-2ee6dc7c791a",
"metadata": {},
"source": [
"> **Theorem:** \n",
Expand Down Expand Up @@ -53,15 +53,29 @@
"$\\varphi(\\cdot)$ is a convex function, it takes its unique minimum $d$ at $t=0$. Thus\n",
"\n",
"$$\n",
"0 = \\frac{d \\varphi(t)}{dt}|_{t=0} = \\{ 2 (u-u_0, w) - 2 t (w,w) \\} |_{t=0} = \n",
" 2 (u-u_0,w)\n",
"0 = \\frac{d \\varphi(t)}{dt}|_{t=0} = \\{ -2 (u-u_0, w) + 2 t (w,w) \\} |_{t=0} = \n",
" -2 (u-u_0,w)\n",
"$$ \n",
"We obtained $u-u_0 \\bot S$. If there were two minimizers $u_0 \\neq u_1$, \n",
"then $u_0-u_1 = (u_0-u) - (u_1-u) \\bot S$ and $u_0-u_1 \\in S$, which implies\n",
"$u_0-u_1 = 0$, a contradiction.\n",
" $\\Box$\n",
"\n",
"\n",
" $\\Box$"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "bfdcb7c7-8a09-4f9b-9227-98b965c79f71",
"metadata": {},
"source": [
"![picproject.png](picproject.png)"
]
},
{
"cell_type": "markdown",
"id": "6471497e-8bba-4765-af99-78486481d171",
"metadata": {},
"source": [
"The theorem says that given an $u \\in V$, we can uniquely\n",
"decompose it as\n",
"\n",
Expand Down Expand Up @@ -102,7 +116,7 @@
{
"cell_type": "code",
"execution_count": null,
"id": "f9bc9f14-fc3f-4de1-bf43-7f57d96d015d",
"id": "0f5f6865-6942-46f0-b84f-80517d248252",
"metadata": {},
"outputs": [],
"source": []
Expand Down
11 changes: 6 additions & 5 deletions abstracttheory/BasicProperties.html
Original file line number Diff line number Diff line change
Expand Up @@ -561,11 +561,12 @@ <h1><span class="section-number">7. </span>Basic properties<a class="headerlink"
Now, let <span class="math notranslate nohighlight">\((u_n) \in \operatorname{ker} T^{\mathbb N}\)</span> converge to <span class="math notranslate nohighlight">\(u \in V\)</span>. Since
<span class="math notranslate nohighlight">\(T\)</span> is continuous, <span class="math notranslate nohighlight">\(T u_n \rightarrow T u\)</span>, and thus <span class="math notranslate nohighlight">\(T u = 0\)</span> and <span class="math notranslate nohighlight">\(u \in \operatorname{ker} T\)</span>.
<span class="math notranslate nohighlight">\(\Box\)</span></p>
<p><strong>Lemma:</strong> Let <span class="math notranslate nohighlight">\(S\)</span> be a subspace (not necessarily closed) of <span class="math notranslate nohighlight">\(V\)</span>. Then
$<span class="math notranslate nohighlight">\(
<p><strong>Lemma:</strong> Let <span class="math notranslate nohighlight">\(S\)</span> be a subspace (not necessarily closed) of <span class="math notranslate nohighlight">\(V\)</span>. Then</p>
<div class="math notranslate nohighlight">
\[
S^\bot := \{ v \in V : (v,w) = 0 \; \forall \, w \in S \}
\)</span>$
is a closed subspace.</p>
\]</div>
<p>is a closed subspace.</p>
<p>The proof is similar to the Lemma on the kernel.</p>
<p><strong>Definition:</strong> Let <span class="math notranslate nohighlight">\(V\)</span> and <span class="math notranslate nohighlight">\(W\)</span> be vector spaces. A <strong>linear operator</strong> <span class="math notranslate nohighlight">\(T : V \rightarrow W\)</span> is a linear mapping from <span class="math notranslate nohighlight">\(V\)</span> to <span class="math notranslate nohighlight">\(W\)</span>. The operator is called <strong>bounded</strong> if its operator-norm</p>
<div class="math notranslate nohighlight">
Expand All @@ -587,7 +588,7 @@ <h1><span class="section-number">7. </span>Basic properties<a class="headerlink"
<p><strong>Extension principle:</strong> Let <span class="math notranslate nohighlight">\(S\)</span> be a dense subspace of the normed space <span class="math notranslate nohighlight">\(V\)</span>,
and let <span class="math notranslate nohighlight">\(W\)</span> be a complete space. Let <span class="math notranslate nohighlight">\(T : S \rightarrow W\)</span> be a bounded linear operator
with respect to the norm <span class="math notranslate nohighlight">\(\| T \|_{V \rightarrow W}\)</span>. Then, the operator can be uniquely extended onto <span class="math notranslate nohighlight">\(V\)</span>.</p>
<p><em>Proof:</em> Let <span class="math notranslate nohighlight">\(u \in V\)</span>, and let <span class="math notranslate nohighlight">\(v_n\)</span> be a sequence such that <span class="math notranslate nohighlight">\(v_n \rightarrow u\)</span>. Thus, <span class="math notranslate nohighlight">\(v_n\)</span> is Cauchy. <span class="math notranslate nohighlight">\(T v_n\)</span> is a well defined sequence in <span class="math notranslate nohighlight">\(W\)</span>. Since <span class="math notranslate nohighlight">\(T\)</span> is continuous, <span class="math notranslate nohighlight">\(T v_n\)</span> is also Cauchy. Since <span class="math notranslate nohighlight">\(W\)</span> is complete, there exists a limit <span class="math notranslate nohighlight">\(w\)</span> such that <span class="math notranslate nohighlight">\(T v_n \rightarrow w\)</span>. The limit is independent of the sequence, and thus <span class="math notranslate nohighlight">\(T u\)</span> can be defined as the limit <span class="math notranslate nohighlight">\(w\)</span>.</p>
<p><em>Proof:</em> Let <span class="math notranslate nohighlight">\(u \in V\)</span>, and let <span class="math notranslate nohighlight">\(v_n\)</span> be a sequence in <span class="math notranslate nohighlight">\(S\)</span> such that <span class="math notranslate nohighlight">\(v_n \rightarrow u\)</span>. Thus, <span class="math notranslate nohighlight">\(v_n\)</span> is Cauchy. <span class="math notranslate nohighlight">\(T v_n\)</span> is a well defined sequence in <span class="math notranslate nohighlight">\(W\)</span>. Since <span class="math notranslate nohighlight">\(T\)</span> is bounded, <span class="math notranslate nohighlight">\(T v_n\)</span> is also Cauchy. Since <span class="math notranslate nohighlight">\(W\)</span> is complete, there exists a limit <span class="math notranslate nohighlight">\(w\)</span> such that <span class="math notranslate nohighlight">\(T v_n \rightarrow w\)</span>. The limit is independent of the sequence, and thus <span class="math notranslate nohighlight">\(T u\)</span> can be defined as the limit <span class="math notranslate nohighlight">\(w\)</span>.</p>
<p><strong>Definition:</strong> A bounded linear operator <span class="math notranslate nohighlight">\(T : V \rightarrow W\)</span> is called <strong>compact</strong> if for every bounded sequence <span class="math notranslate nohighlight">\((u_n) \in V^{\mathbb N}\)</span>, the sequence <span class="math notranslate nohighlight">\((T u_n)\)</span> contains a convergent sub-sequence.</p>
<p><strong>Lemma:</strong> Let <span class="math notranslate nohighlight">\(V, W\)</span> be Hilbert spaces. An operator is
compact if and only if there exists a complete orthogonal system
Expand Down
2 changes: 1 addition & 1 deletion abstracttheory/Coercive.html
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,7 @@
<link rel="stylesheet" type="text/css" href="../_static/styles/sphinx-book-theme.css?v=384b581d" />
<link rel="stylesheet" type="text/css" href="../_static/togglebutton.css?v=13237357" />
<link rel="stylesheet" type="text/css" href="../_static/copybutton.css?v=76b2166b" />
<link rel="stylesheet" type="text/css" href="../_static/mystnb.4510f1fc1dee50b3e5859aac5469c37c29e427902b24a333a5f9fcb2f0b3ac41.css?v=be8a1c11" />
<link rel="stylesheet" type="text/css" href="../_static/mystnb.4510f1fc1dee50b3e5859aac5469c37c29e427902b24a333a5f9fcb2f0b3ac41.css" />
<link rel="stylesheet" type="text/css" href="../_static/sphinx-thebe.css?v=4fa983c6" />
<link rel="stylesheet" type="text/css" href="../_static/design-style.1e8bd061cd6da7fc9cf755528e8ffc24.min.css?v=0a3b3ea7" />

Expand Down
4 changes: 2 additions & 2 deletions abstracttheory/exercises.html
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,7 @@
<link rel="stylesheet" type="text/css" href="../_static/styles/sphinx-book-theme.css?v=384b581d" />
<link rel="stylesheet" type="text/css" href="../_static/togglebutton.css?v=13237357" />
<link rel="stylesheet" type="text/css" href="../_static/copybutton.css?v=76b2166b" />
<link rel="stylesheet" type="text/css" href="../_static/mystnb.4510f1fc1dee50b3e5859aac5469c37c29e427902b24a333a5f9fcb2f0b3ac41.css?v=be8a1c11" />
<link rel="stylesheet" type="text/css" href="../_static/mystnb.4510f1fc1dee50b3e5859aac5469c37c29e427902b24a333a5f9fcb2f0b3ac41.css" />
<link rel="stylesheet" type="text/css" href="../_static/sphinx-thebe.css?v=4fa983c6" />
<link rel="stylesheet" type="text/css" href="../_static/design-style.1e8bd061cd6da7fc9cf755528e8ffc24.min.css?v=0a3b3ea7" />

Expand Down Expand Up @@ -577,7 +577,7 @@ <h3><span class="section-number">12.3.3. </span>complex-valued problem as real s
</section>
<section id="one-sup-is-enough">
<h2><span class="section-number">12.4. </span>One sup is enough<a class="headerlink" href="#one-sup-is-enough" title="Link to this heading">#</a></h2>
<p>Let <span class="math notranslate nohighlight">\(A(.,.)\)</span> be a continuous and symmetric bilinear-form on the Hilbert-space <span class="math notranslate nohighlight">\(V\)</span>. Proof that</p>
<p>Let <span class="math notranslate nohighlight">\(A(.,.)\)</span> be a continuous and symmetric bilinear-form on the Hilbert-space <span class="math notranslate nohighlight">\(V\)</span>. Prove that</p>
<div class="math notranslate nohighlight">
\[
\sup_{x \in V} \sup_{y \in V} \frac{A(x,y)}{\| x \| \, \| y \| } =
Expand Down
2 changes: 1 addition & 1 deletion abstracttheory/infsup.html
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,7 @@
<link rel="stylesheet" type="text/css" href="../_static/styles/sphinx-book-theme.css?v=384b581d" />
<link rel="stylesheet" type="text/css" href="../_static/togglebutton.css?v=13237357" />
<link rel="stylesheet" type="text/css" href="../_static/copybutton.css?v=76b2166b" />
<link rel="stylesheet" type="text/css" href="../_static/mystnb.4510f1fc1dee50b3e5859aac5469c37c29e427902b24a333a5f9fcb2f0b3ac41.css?v=be8a1c11" />
<link rel="stylesheet" type="text/css" href="../_static/mystnb.4510f1fc1dee50b3e5859aac5469c37c29e427902b24a333a5f9fcb2f0b3ac41.css" />
<link rel="stylesheet" type="text/css" href="../_static/sphinx-thebe.css?v=4fa983c6" />
<link rel="stylesheet" type="text/css" href="../_static/design-style.1e8bd061cd6da7fc9cf755528e8ffc24.min.css?v=0a3b3ea7" />

Expand Down
5 changes: 3 additions & 2 deletions abstracttheory/subspaceprojection.html
Original file line number Diff line number Diff line change
Expand Up @@ -508,13 +508,14 @@ <h1><span class="section-number">8. </span>Projection onto subspaces<a class="he
<span class="math notranslate nohighlight">\(\varphi(\cdot)\)</span> is a convex function, it takes its unique minimum <span class="math notranslate nohighlight">\(d\)</span> at <span class="math notranslate nohighlight">\(t=0\)</span>. Thus</p>
<div class="math notranslate nohighlight">
\[
0 = \frac{d \varphi(t)}{dt}|_{t=0} = \{ 2 (u-u_0, w) - 2 t (w,w) \} |_{t=0} =
2 (u-u_0,w)
0 = \frac{d \varphi(t)}{dt}|_{t=0} = \{ -2 (u-u_0, w) + 2 t (w,w) \} |_{t=0} =
-2 (u-u_0,w)
\]</div>
<p>We obtained <span class="math notranslate nohighlight">\(u-u_0 \bot S\)</span>. If there were two minimizers <span class="math notranslate nohighlight">\(u_0 \neq u_1\)</span>,
then <span class="math notranslate nohighlight">\(u_0-u_1 = (u_0-u) - (u_1-u) \bot S\)</span> and <span class="math notranslate nohighlight">\(u_0-u_1 \in S\)</span>, which implies
<span class="math notranslate nohighlight">\(u_0-u_1 = 0\)</span>, a contradiction.
<span class="math notranslate nohighlight">\(\Box\)</span></p>
<p><img alt="picproject.png" src="../_images/picproject.png" /></p>
<p>The theorem says that given an <span class="math notranslate nohighlight">\(u \in V\)</span>, we can uniquely
decompose it as</p>
<div class="math notranslate nohighlight">
Expand Down
2 changes: 1 addition & 1 deletion primal/elasticity3D.html
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,7 @@
<link rel="stylesheet" type="text/css" href="../_static/styles/sphinx-book-theme.css?v=384b581d" />
<link rel="stylesheet" type="text/css" href="../_static/togglebutton.css?v=13237357" />
<link rel="stylesheet" type="text/css" href="../_static/copybutton.css?v=76b2166b" />
<link rel="stylesheet" type="text/css" href="../_static/mystnb.4510f1fc1dee50b3e5859aac5469c37c29e427902b24a333a5f9fcb2f0b3ac41.css?v=be8a1c11" />
<link rel="stylesheet" type="text/css" href="../_static/mystnb.4510f1fc1dee50b3e5859aac5469c37c29e427902b24a333a5f9fcb2f0b3ac41.css" />
<link rel="stylesheet" type="text/css" href="../_static/sphinx-thebe.css?v=4fa983c6" />
<link rel="stylesheet" type="text/css" href="../_static/design-style.1e8bd061cd6da7fc9cf755528e8ffc24.min.css?v=0a3b3ea7" />

Expand Down
44 changes: 0 additions & 44 deletions reports/DG/splitting.err.log

This file was deleted.

28 changes: 0 additions & 28 deletions reports/MPIparallel/PETSc_interface.err.log

This file was deleted.

Loading

0 comments on commit 90129d6

Please sign in to comment.