Skip to content

Jackson-Kang/Pytorch-VAE-tutorial

Repository files navigation

VAE-tutorial

A simple tutorial of Variational AutoEncoder(VAE) models. This repository contains the implementations of following VAE families.

Requirements

How-to-use

simply run the <file_name>.ipynb files using jupyter notebook.

Experimental Results

Variational AutoEncoder (VAE)

  • trained on MNIST dataset for 20 epochs
  • groundtruth(left) vs. generated(reconstructed, right)

VAE_ground_truth VAE_reconstructed

  • generated random samples from noise vector

VAE_generated_sample

Vector Quantized Variational AutoEncoder (VQ-VAE)

  • trained on CIFAR-10 dataset for 50 epochs
  • groundtruth(top) vs. reconstruction(bottom)

VQ-VAE_ground_truth

VQ-VAE_reconstructed

  • randomly sampled codes from codebook

VQ-VAE_random_codes

About

A simple tutorial of Variational AutoEncoders with Pytorch

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published