Skip to content
/ wcde Public
forked from guyabel/wcde

Package to download data from the Wittgenstein Centre Human Capital Data Explorer into R

Notifications You must be signed in to change notification settings

Jadevkota/wcde

 
 

Repository files navigation

wcde

CRAN status CRAN RStudio mirror downloads Lifecycle: experimental R-CMD-check

Download data from the Wittgenstein Centre Human Capital Data Explorer into R

See the pkgdown site for full details.

Installation

You can install the released version of wcde from CRAN with:

install.packages("wcde")

Install the developmental version with:

library(devtools)
install_github("guyabel/wcde", ref = "main")

Example

Download data based on a indicator, scenario and country code:

library(wcde)
#> Suggested citation for data:
#> Wittgenstein Centre for Demography and Global Human Capital (WIC) Wittgenstein Centre Data Explorer. Version 2.0, 2018

# SSP2 education specific tfr for Austria
get_wcde(indicator = "etfr", country_name = "Austria")
#> # A tibble: 102 x 6
#>    scenario name    country_code education          period     etfr
#>       <dbl> <chr>          <dbl> <chr>              <chr>     <dbl>
#>  1        2 Austria           40 No Education       2015-2020  1.64
#>  2        2 Austria           40 Incomplete Primary 2015-2020  1.64
#>  3        2 Austria           40 Primary            2015-2020  1.64
#>  4        2 Austria           40 Lower Secondary    2015-2020  1.66
#>  5        2 Austria           40 Upper Secondary    2015-2020  1.46
#>  6        2 Austria           40 Post Secondary     2015-2020  1.36
#>  7        2 Austria           40 No Education       2020-2025  1.68
#>  8        2 Austria           40 Incomplete Primary 2020-2025  1.68
#>  9        2 Austria           40 Primary            2020-2025  1.68
#> 10        2 Austria           40 Lower Secondary    2020-2025  1.67
#> # ... with 92 more rows

# SSP2 education specific population sizes for Iran and Kenya
get_wcde(indicator = "epop", country_code = c(364, 404))
#> # A tibble: 36,300 x 8
#>    scenario name             country_code age   sex   education      year   epop
#>       <dbl> <chr>                   <dbl> <chr> <chr> <chr>         <dbl>  <dbl>
#>  1        2 Iran (Islamic R~          364 All   Both  Total          1950 17119.
#>  2        2 Kenya                     404 All   Both  Total          1950  6077.
#>  3        2 Iran (Islamic R~          364 All   Both  Under 15       1950  6210 
#>  4        2 Kenya                     404 All   Both  Under 15       1950  2417.
#>  5        2 Iran (Islamic R~          364 All   Both  No Education   1950  9648.
#>  6        2 Kenya                     404 All   Both  No Education   1950  2867.
#>  7        2 Iran (Islamic R~          364 All   Both  Incomplete P~  1950   378 
#>  8        2 Kenya                     404 All   Both  Incomplete P~  1950   555.
#>  9        2 Iran (Islamic R~          364 All   Both  Primary        1950   631.
#> 10        2 Kenya                     404 All   Both  Primary        1950   139.
#> # ... with 36,290 more rows

# SSP1, 2 and 3 gender gaps in educational attainment (15+) for all countries
get_wcde(indicator = "ggapedu15", scenario = 1:3)
#> # A tibble: 124,038 x 6
#>    scenario name                     country_code  year education    ggapedu15
#>       <int> <chr>                           <dbl> <dbl> <chr>            <dbl>
#>  1        1 Bulgaria                          100  1950 No Education       -16
#>  2        1 Myanmar                           104  1950 No Education       -13
#>  3        1 Burundi                           108  1950 No Education       -11
#>  4        1 Belarus                           112  1950 No Education       -10
#>  5        1 Cambodia                          116  1950 No Education       -28
#>  6        1 Algeria                            12  1950 No Education        -6
#>  7        1 Cameroon                          120  1950 No Education       -16
#>  8        1 Canada                            124  1950 No Education        -1
#>  9        1 Cape Verde                        132  1950 No Education       -14
#> 10        1 Central African Republic          140  1950 No Education        -4
#> # ... with 124,028 more rows

Vignette

The vignette provides many more examples on how to use the package to download data and produce plots from the Wittgenstein Centre Human Capital Data Explorer.

About

Package to download data from the Wittgenstein Centre Human Capital Data Explorer into R

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • R 100.0%