Skip to content

Jiaheliu137/neural_network

Repository files navigation

This repository is used to record the project for the AIZU University course: Neural Networks I: Fundamental Theory and Applications.

Run the following code to use this repository.

git clone https://github.com/Jiaheliu137/neural_network
cd neural_network
pip install -r requirements.txt
  1. project2(4-bit parity check):Report_project2_CN.md, Report_project2_EN.md, Report_project2_CN.pdf, Report_project2_EN.pdf

    cd project2
    1. Draw a graph

      python project2.py
    2. Draw a graph matrix

      python draw_plot.py
  2. project3(Hopfield Network):Report_project3_CN.md, Report_project3_EN.md, Report_project3_CN.pdf, Report_project3_EN.pdf

    cd project3
    • Visualizing images of raw data patterns.

      python draw_pattern.py
    • Adding noise to raw data patterns.

      python noise.py -nl 0.15
      • $nl \in [0, 1]$
    • Recall noised pattern and visulize

      python project3.py -nl 15
      • $nl \in [0, 1]$ and $nl$ shuld be integer
  3. project4(WTA network, Iris dataset):Report_project4_CN.md, Report_project4_EN.md, Report_project4_CN.pdf, Report_project4_EN.pdf

    cd project4
    python project4.py -v 3 -c 6
    • -v | --visualize : The dimensionality of visualization, $v \in {2, 3}$
    • -c | --cluster : Number of clusters, $c \geq 1$
  4. project5(SOFM, Iris dataset):Report_project5_CN.md, Report_project5_EN.md, Report_project5_CN.pdf, Report_project5_EN.pdf

    • Use WTA to generate the cluster file

      python output_cluster.py [-c <num>]
    • Use SOFM to compressing data dimensions and visualize

      python project5.py [-c <num>]

The SOFM (Self-Organizing Feature Map) algorithm has multiple nested loops and requires plotting, which makes its execution speed relatively slow

eg.

cd project5
python output_cluster.py -c 3
python project5.py -c 3
  • -c | --cluster : Number of clusters,the value is recommended $2 \leq c \leq 6$
  1. Final_Presentation

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published