Skip to content

Commit

Permalink
bump the version to 5.2.0 [skip test]
Browse files Browse the repository at this point in the history
  • Loading branch information
maziyarpanahi committed Dec 7, 2023
1 parent e000610 commit 37b8d24
Show file tree
Hide file tree
Showing 17 changed files with 131 additions and 131 deletions.
88 changes: 44 additions & 44 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -172,7 +172,7 @@ To use Spark NLP you need the following requirements:

**GPU (optional):**

Spark NLP 5.1.4 is built with ONNX 1.15.1 and TensorFlow 2.7.1 deep learning engines. The minimum following NVIDIA® software are only required for GPU support:
Spark NLP 5.2.0 is built with ONNX 1.15.1 and TensorFlow 2.7.1 deep learning engines. The minimum following NVIDIA® software are only required for GPU support:

- NVIDIA® GPU drivers version 450.80.02 or higher
- CUDA® Toolkit 11.2
Expand All @@ -188,7 +188,7 @@ $ java -version
$ conda create -n sparknlp python=3.7 -y
$ conda activate sparknlp
# spark-nlp by default is based on pyspark 3.x
$ pip install spark-nlp==5.1.4 pyspark==3.3.1
$ pip install spark-nlp==5.2.0 pyspark==3.3.1
```

In Python console or Jupyter `Python3` kernel:
Expand Down Expand Up @@ -233,7 +233,7 @@ For more examples, you can visit our dedicated [examples](https://github.com/Joh

## Apache Spark Support

Spark NLP *5.1.4* has been built on top of Apache Spark 3.4 while fully supports Apache Spark 3.0.x, 3.1.x, 3.2.x, 3.3.x, 3.4.x, and 3.5.x
Spark NLP *5.2.0* has been built on top of Apache Spark 3.4 while fully supports Apache Spark 3.0.x, 3.1.x, 3.2.x, 3.3.x, 3.4.x, and 3.5.x

| Spark NLP | Apache Spark 3.5.x | Apache Spark 3.4.x | Apache Spark 3.3.x | Apache Spark 3.2.x | Apache Spark 3.1.x | Apache Spark 3.0.x | Apache Spark 2.4.x | Apache Spark 2.3.x |
|-----------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
Expand Down Expand Up @@ -273,7 +273,7 @@ Find out more about `Spark NLP` versions from our [release notes](https://github

## Databricks Support

Spark NLP 5.1.4 has been tested and is compatible with the following runtimes:
Spark NLP 5.2.0 has been tested and is compatible with the following runtimes:

**CPU:**

Expand Down Expand Up @@ -340,7 +340,7 @@ Spark NLP 5.1.4 has been tested and is compatible with the following runtimes:

## EMR Support

Spark NLP 5.1.4 has been tested and is compatible with the following EMR releases:
Spark NLP 5.2.0 has been tested and is compatible with the following EMR releases:

- emr-6.2.0
- emr-6.3.0
Expand Down Expand Up @@ -387,11 +387,11 @@ Spark NLP supports all major releases of Apache Spark 3.0.x, Apache Spark 3.1.x,
```sh
# CPU

spark-shell --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.4
spark-shell --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.0

pyspark --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.4
pyspark --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.0

spark-submit --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.4
spark-submit --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.0
```

The `spark-nlp` has been published to
Expand All @@ -400,11 +400,11 @@ the [Maven Repository](https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/s
```sh
# GPU

spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:5.1.4
spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:5.2.0

pyspark --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:5.1.4
pyspark --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:5.2.0

spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:5.1.4
spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:5.2.0

```

Expand All @@ -414,11 +414,11 @@ the [Maven Repository](https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/s
```sh
# AArch64

spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:5.1.4
spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:5.2.0

pyspark --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:5.1.4
pyspark --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:5.2.0

spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:5.1.4
spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:5.2.0

```

Expand All @@ -428,11 +428,11 @@ the [Maven Repository](https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/s
```sh
# M1/M2 (Apple Silicon)

spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:5.1.4
spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:5.2.0

pyspark --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:5.1.4
pyspark --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:5.2.0

spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:5.1.4
spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:5.2.0

```

Expand All @@ -446,7 +446,7 @@ set in your SparkSession:
spark-shell \
--driver-memory 16g \
--conf spark.kryoserializer.buffer.max=2000M \
--packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.4
--packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.0
```

## Scala
Expand All @@ -464,7 +464,7 @@ coordinates:
<dependency>
<groupId>com.johnsnowlabs.nlp</groupId>
<artifactId>spark-nlp_2.12</artifactId>
<version>5.1.4</version>
<version>5.2.0</version>
</dependency>
```

Expand All @@ -475,7 +475,7 @@ coordinates:
<dependency>
<groupId>com.johnsnowlabs.nlp</groupId>
<artifactId>spark-nlp-gpu_2.12</artifactId>
<version>5.1.4</version>
<version>5.2.0</version>
</dependency>
```

Expand All @@ -486,7 +486,7 @@ coordinates:
<dependency>
<groupId>com.johnsnowlabs.nlp</groupId>
<artifactId>spark-nlp-aarch64_2.12</artifactId>
<version>5.1.4</version>
<version>5.2.0</version>
</dependency>
```

Expand All @@ -497,7 +497,7 @@ coordinates:
<dependency>
<groupId>com.johnsnowlabs.nlp</groupId>
<artifactId>spark-nlp-silicon_2.12</artifactId>
<version>5.1.4</version>
<version>5.2.0</version>
</dependency>
```

Expand All @@ -507,28 +507,28 @@ coordinates:

```sbtshell
// https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp
libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp" % "5.1.4"
libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp" % "5.2.0"
```

**spark-nlp-gpu:**

```sbtshell
// https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp-gpu
libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-gpu" % "5.1.4"
libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-gpu" % "5.2.0"
```

**spark-nlp-aarch64:**

```sbtshell
// https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp-aarch64
libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-aarch64" % "5.1.4"
libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-aarch64" % "5.2.0"
```

**spark-nlp-silicon:**

```sbtshell
// https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp-silicon
libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-silicon" % "5.1.4"
libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-silicon" % "5.2.0"
```

Maven
Expand All @@ -550,7 +550,7 @@ If you installed pyspark through pip/conda, you can install `spark-nlp` through
Pip:

```bash
pip install spark-nlp==5.1.4
pip install spark-nlp==5.2.0
```

Conda:
Expand Down Expand Up @@ -579,7 +579,7 @@ spark = SparkSession.builder
.config("spark.driver.memory", "16G")
.config("spark.driver.maxResultSize", "0")
.config("spark.kryoserializer.buffer.max", "2000M")
.config("spark.jars.packages", "com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.4")
.config("spark.jars.packages", "com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.0")
.getOrCreate()
```

Expand Down Expand Up @@ -650,7 +650,7 @@ Use either one of the following options
- Add the following Maven Coordinates to the interpreter's library list

```bash
com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.4
com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.0
```

- Add a path to pre-built jar from [here](#compiled-jars) in the interpreter's library list making sure the jar is
Expand All @@ -661,7 +661,7 @@ com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.4
Apart from the previous step, install the python module through pip

```bash
pip install spark-nlp==5.1.4
pip install spark-nlp==5.2.0
```

Or you can install `spark-nlp` from inside Zeppelin by using Conda:
Expand Down Expand Up @@ -689,7 +689,7 @@ launch the Jupyter from the same Python environment:
$ conda create -n sparknlp python=3.8 -y
$ conda activate sparknlp
# spark-nlp by default is based on pyspark 3.x
$ pip install spark-nlp==5.1.4 pyspark==3.3.1 jupyter
$ pip install spark-nlp==5.2.0 pyspark==3.3.1 jupyter
$ jupyter notebook
```

Expand All @@ -706,7 +706,7 @@ export PYSPARK_PYTHON=python3
export PYSPARK_DRIVER_PYTHON=jupyter
export PYSPARK_DRIVER_PYTHON_OPTS=notebook

pyspark --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.4
pyspark --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.0
```

Alternatively, you can mix in using `--jars` option for pyspark + `pip install spark-nlp`
Expand All @@ -733,7 +733,7 @@ This script comes with the two options to define `pyspark` and `spark-nlp` versi
# -s is for spark-nlp
# -g will enable upgrading libcudnn8 to 8.1.0 on Google Colab for GPU usage
# by default they are set to the latest
!wget https://setup.johnsnowlabs.com/colab.sh -O - | bash /dev/stdin -p 3.2.3 -s 5.1.4
!wget https://setup.johnsnowlabs.com/colab.sh -O - | bash /dev/stdin -p 3.2.3 -s 5.2.0
```

[Spark NLP quick start on Google Colab](https://colab.research.google.com/github/JohnSnowLabs/spark-nlp/blob/master/examples/python/quick_start_google_colab.ipynb)
Expand All @@ -756,7 +756,7 @@ This script comes with the two options to define `pyspark` and `spark-nlp` versi
# -s is for spark-nlp
# -g will enable upgrading libcudnn8 to 8.1.0 on Kaggle for GPU usage
# by default they are set to the latest
!wget https://setup.johnsnowlabs.com/colab.sh -O - | bash /dev/stdin -p 3.2.3 -s 5.1.4
!wget https://setup.johnsnowlabs.com/colab.sh -O - | bash /dev/stdin -p 3.2.3 -s 5.2.0
```

[Spark NLP quick start on Kaggle Kernel](https://www.kaggle.com/mozzie/spark-nlp-named-entity-recognition) is a live
Expand All @@ -775,9 +775,9 @@ demo on Kaggle Kernel that performs named entity recognitions by using Spark NLP

3. In `Libraries` tab inside your cluster you need to follow these steps:

3.1. Install New -> PyPI -> `spark-nlp==5.1.4` -> Install
3.1. Install New -> PyPI -> `spark-nlp==5.2.0` -> Install

3.2. Install New -> Maven -> Coordinates -> `com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.4` -> Install
3.2. Install New -> Maven -> Coordinates -> `com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.0` -> Install

4. Now you can attach your notebook to the cluster and use Spark NLP!

Expand Down Expand Up @@ -828,7 +828,7 @@ A sample of your software configuration in JSON on S3 (must be public access):
"spark.kryoserializer.buffer.max": "2000M",
"spark.serializer": "org.apache.spark.serializer.KryoSerializer",
"spark.driver.maxResultSize": "0",
"spark.jars.packages": "com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.4"
"spark.jars.packages": "com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.0"
}
}]
```
Expand All @@ -837,7 +837,7 @@ A sample of AWS CLI to launch EMR cluster:
```.sh
aws emr create-cluster \
--name "Spark NLP 5.1.4" \
--name "Spark NLP 5.2.0" \
--release-label emr-6.2.0 \
--applications Name=Hadoop Name=Spark Name=Hive \
--instance-type m4.4xlarge \
Expand Down Expand Up @@ -901,7 +901,7 @@ gcloud dataproc clusters create ${CLUSTER_NAME} \
--enable-component-gateway \
--metadata 'PIP_PACKAGES=spark-nlp spark-nlp-display google-cloud-bigquery google-cloud-storage' \
--initialization-actions gs://goog-dataproc-initialization-actions-${REGION}/python/pip-install.sh \
--properties spark:spark.serializer=org.apache.spark.serializer.KryoSerializer,spark:spark.driver.maxResultSize=0,spark:spark.kryoserializer.buffer.max=2000M,spark:spark.jars.packages=com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.4
--properties spark:spark.serializer=org.apache.spark.serializer.KryoSerializer,spark:spark.driver.maxResultSize=0,spark:spark.kryoserializer.buffer.max=2000M,spark:spark.jars.packages=com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.0
```
2. On an existing one, you need to install spark-nlp and spark-nlp-display packages from PyPI.
Expand Down Expand Up @@ -940,7 +940,7 @@ spark = SparkSession.builder
.config("spark.kryoserializer.buffer.max", "2000m")
.config("spark.jsl.settings.pretrained.cache_folder", "sample_data/pretrained")
.config("spark.jsl.settings.storage.cluster_tmp_dir", "sample_data/storage")
.config("spark.jars.packages", "com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.4")
.config("spark.jars.packages", "com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.0")
.getOrCreate()
```
Expand All @@ -954,7 +954,7 @@ spark-shell \
--conf spark.kryoserializer.buffer.max=2000M \
--conf spark.jsl.settings.pretrained.cache_folder="sample_data/pretrained" \
--conf spark.jsl.settings.storage.cluster_tmp_dir="sample_data/storage" \
--packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.4
--packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.0
```
**pyspark:**
Expand All @@ -967,7 +967,7 @@ pyspark \
--conf spark.kryoserializer.buffer.max=2000M \
--conf spark.jsl.settings.pretrained.cache_folder="sample_data/pretrained" \
--conf spark.jsl.settings.storage.cluster_tmp_dir="sample_data/storage" \
--packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.4
--packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.0
```
**Databricks:**
Expand Down Expand Up @@ -1239,7 +1239,7 @@ spark = SparkSession.builder
.config("spark.driver.memory", "16G")
.config("spark.driver.maxResultSize", "0")
.config("spark.kryoserializer.buffer.max", "2000M")
.config("spark.jars", "/tmp/spark-nlp-assembly-5.1.4.jar")
.config("spark.jars", "/tmp/spark-nlp-assembly-5.2.0.jar")
.getOrCreate()
```
Expand All @@ -1248,7 +1248,7 @@ spark = SparkSession.builder
version (3.0.x, 3.1.x, 3.2.x, 3.3.x, 3.4.x, and 3.5.x)
- If you are local, you can load the Fat JAR from your local FileSystem, however, if you are in a cluster setup you need
to put the Fat JAR on a distributed FileSystem such as HDFS, DBFS, S3, etc. (
i.e., `hdfs:///tmp/spark-nlp-assembly-5.1.4.jar`)
i.e., `hdfs:///tmp/spark-nlp-assembly-5.2.0.jar`)
Example of using pretrained Models and Pipelines in offline:
Expand Down
2 changes: 1 addition & 1 deletion build.sbt
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@ name := getPackageName(is_silicon, is_gpu, is_aarch64)

organization := "com.johnsnowlabs.nlp"

version := "5.1.4"
version := "5.2.0"

(ThisBuild / scalaVersion) := scalaVer

Expand Down
2 changes: 1 addition & 1 deletion docs/_layouts/landing.html
Original file line number Diff line number Diff line change
Expand Up @@ -201,7 +201,7 @@ <h3 class="grey h3_title">{{ _section.title }}</h3>
<div class="highlight-box">
{% highlight bash %}
# Using PyPI
$ pip install spark-nlp==5.1.4
$ pip install spark-nlp==5.2.0

# Using Anaconda/Conda
$ conda install -c johnsnowlabs spark-nlp
Expand Down
2 changes: 1 addition & 1 deletion docs/en/concepts.md
Original file line number Diff line number Diff line change
Expand Up @@ -66,7 +66,7 @@ $ java -version
$ conda create -n sparknlp python=3.7 -y
$ conda activate sparknlp
# spark-nlp by default is based on pyspark 3.x
$ pip install spark-nlp==5.1.4 pyspark==3.3.1 jupyter
$ pip install spark-nlp==5.2.0 pyspark==3.3.1 jupyter
$ jupyter notebook
```

Expand Down
4 changes: 2 additions & 2 deletions docs/en/examples.md
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@ $ java -version
# should be Java 8 (Oracle or OpenJDK)
$ conda create -n sparknlp python=3.7 -y
$ conda activate sparknlp
$ pip install spark-nlp==5.1.4 pyspark==3.3.1
$ pip install spark-nlp==5.2.0 pyspark==3.3.1
```

</div><div class="h3-box" markdown="1">
Expand All @@ -40,7 +40,7 @@ This script comes with the two options to define `pyspark` and `spark-nlp` versi
# -p is for pyspark
# -s is for spark-nlp
# by default they are set to the latest
!bash colab.sh -p 3.2.3 -s 5.1.4
!bash colab.sh -p 3.2.3 -s 5.2.0
```

[Spark NLP quick start on Google Colab](https://colab.research.google.com/github/JohnSnowLabs/spark-nlp/blob/master/examples/python/quick_start_google_colab.ipynb) is a live demo on Google Colab that performs named entity recognitions and sentiment analysis by using Spark NLP pretrained pipelines.
Expand Down
2 changes: 1 addition & 1 deletion docs/en/hardware_acceleration.md
Original file line number Diff line number Diff line change
Expand Up @@ -49,7 +49,7 @@ Since the new Transformer models such as BERT for Word and Sentence embeddings a
| DeBERTa Large | +477%(5.8x) |
| Longformer Base | +52%(1.5x) |

Spark NLP 5.1.4 is built with TensorFlow 2.7.1 and the following NVIDIA® software are only required for GPU support:
Spark NLP 5.2.0 is built with TensorFlow 2.7.1 and the following NVIDIA® software are only required for GPU support:

- NVIDIA® GPU drivers version 450.80.02 or higher
- CUDA® Toolkit 11.2
Expand Down
Loading

0 comments on commit 37b8d24

Please sign in to comment.