-
Notifications
You must be signed in to change notification settings - Fork 717
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* implementing SnowFlake * typo fix --------- Co-authored-by: Maziyar Panahi <[email protected]>
- Loading branch information
1 parent
803edf6
commit 50a6966
Showing
10 changed files
with
1,247 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
202 changes: 202 additions & 0 deletions
202
python/sparknlp/annotator/embeddings/snowflake_embeddings.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,202 @@ | ||
# Copyright 2017-2022 John Snow Labs | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
"""Contains classes for SnowFlakeEmbeddings.""" | ||
|
||
from sparknlp.common import * | ||
|
||
|
||
class SnowFlakeEmbeddings(AnnotatorModel, | ||
HasEmbeddingsProperties, | ||
HasCaseSensitiveProperties, | ||
HasStorageRef, | ||
HasBatchedAnnotate, | ||
HasMaxSentenceLengthLimit): | ||
"""Sentence embeddings using SnowFlake. | ||
snowflake-arctic-embed is a suite of text embedding models that focuses on creating | ||
high-quality retrieval models optimized for performance. | ||
Pretrained models can be loaded with :meth:`.pretrained` of the companion | ||
object: | ||
>>> embeddings = SnowFlakeEmbeddings.pretrained() \\ | ||
... .setInputCols(["document"]) \\ | ||
... .setOutputCol("SnowFlake_embeddings") | ||
The default model is ``"snowflake_artic_m"``, if no name is provided. | ||
For available pretrained models please see the | ||
`Models Hub <https://sparknlp.org/models?q=SnowFlake>`__. | ||
====================== ====================== | ||
Input Annotation types Output Annotation type | ||
====================== ====================== | ||
``DOCUMENT`` ``SENTENCE_EMBEDDINGS`` | ||
====================== ====================== | ||
Parameters | ||
---------- | ||
batchSize | ||
Size of every batch , by default 8 | ||
dimension | ||
Number of embedding dimensions, by default 768 | ||
caseSensitive | ||
Whether to ignore case in tokens for embeddings matching, by default False | ||
maxSentenceLength | ||
Max sentence length to process, by default 512 | ||
configProtoBytes | ||
ConfigProto from tensorflow, serialized into byte array. | ||
References | ||
---------- | ||
`Arctic-Embed: Scalable, Efficient, and Accurate Text Embedding Models <https://arxiv.org/abs/2405.05374>`__ | ||
`Snowflake Arctic-Embed Models <https://github.com/Snowflake-Labs/arctic-embed>`__ | ||
**Paper abstract** | ||
*The models are trained by leveraging existing open-source text representation models, such | ||
as bert-base-uncased, and are trained in a multi-stage pipeline to optimize their retrieval | ||
performance. First, the models are trained with large batches of query-document pairs where | ||
negatives are derived in-batch—pretraining leverages about 400m samples of a mix of public | ||
datasets and proprietary web search data. Following pretraining models are further optimized | ||
with long training on a smaller dataset (about 1m samples) of triplets of query, positive | ||
document, and negative document derived from hard harmful mining. Mining of the negatives and | ||
data curation is crucial to retrieval accuracy. A detailed technical report will be available | ||
shortly. * | ||
Examples | ||
-------- | ||
>>> import sparknlp | ||
>>> from sparknlp.base import * | ||
>>> from sparknlp.annotator import * | ||
>>> from pyspark.ml import Pipeline | ||
>>> documentAssembler = DocumentAssembler() \\ | ||
... .setInputCol("text") \\ | ||
... .setOutputCol("document") | ||
>>> embeddings = SnowFlakeEmbeddings.pretrained() \\ | ||
... .setInputCols(["document"]) \\ | ||
... .setOutputCol("embeddings") | ||
>>> embeddingsFinisher = EmbeddingsFinisher() \\ | ||
... .setInputCols("embeddings") \\ | ||
... .setOutputCols("finished_embeddings") \\ | ||
... .setOutputAsVector(True) | ||
>>> pipeline = Pipeline().setStages([ | ||
... documentAssembler, | ||
... embeddings, | ||
... embeddingsFinisher | ||
... ]) | ||
>>> data = spark.createDataFrame([["hello world", "hello moon"]]).toDF("text") | ||
>>> result = pipeline.fit(data).transform(data) | ||
>>> result.selectExpr("explode(finished_embeddings) as result").show(5, 80) | ||
+--------------------------------------------------------------------------------+ | ||
| result| | ||
+--------------------------------------------------------------------------------+ | ||
|[0.50387806, 0.5861606, 0.35129607, -0.76046336, -0.32446072, -0.117674336, 0...| | ||
|[0.6660665, 0.961762, 0.24854276, -0.1018044, -0.6569202, 0.027635604, 0.1915...| | ||
+--------------------------------------------------------------------------------+ | ||
""" | ||
|
||
name = "SnowFlakeEmbeddings" | ||
|
||
inputAnnotatorTypes = [AnnotatorType.DOCUMENT] | ||
|
||
outputAnnotatorType = AnnotatorType.SENTENCE_EMBEDDINGS | ||
poolingStrategy = Param(Params._dummy(), | ||
"poolingStrategy", | ||
"Pooling strategy to use for sentence embeddings", | ||
TypeConverters.toString) | ||
|
||
def setPoolingStrategy(self, value): | ||
"""Pooling strategy to use for sentence embeddings. | ||
Available pooling strategies for sentence embeddings are: | ||
- `"cls"`: leading `[CLS]` token | ||
- `"cls_avg"`: leading `[CLS]` token + mean of all other tokens | ||
- `"last"`: embeddings of the last token in the sequence | ||
- `"avg"`: mean of all tokens | ||
- `"max"`: max of all embedding features of the entire token sequence | ||
- `"int"`: An integer number, which represents the index of the token to use as the | ||
embedding | ||
Parameters | ||
---------- | ||
value : str | ||
Pooling strategy to use for sentence embeddings | ||
""" | ||
|
||
valid_strategies = {"cls", "cls_avg", "last", "avg", "max"} | ||
if value in valid_strategies or value.isdigit(): | ||
return self._set(poolingStrategy=value) | ||
else: | ||
raise ValueError(f"Invalid pooling strategy: {value}. " | ||
f"Valid strategies are: {', '.join(self.valid_strategies)} or an integer.") | ||
|
||
@keyword_only | ||
def __init__(self, classname="com.johnsnowlabs.nlp.embeddings.SnowFlakeEmbeddings", java_model=None): | ||
super(SnowFlakeEmbeddings, self).__init__( | ||
classname=classname, | ||
java_model=java_model | ||
) | ||
self._setDefault( | ||
dimension=1024, | ||
batchSize=8, | ||
maxSentenceLength=512, | ||
caseSensitive=False, | ||
poolingStrategy="cls" | ||
) | ||
|
||
@staticmethod | ||
def loadSavedModel(folder, spark_session): | ||
"""Loads a locally saved model. | ||
Parameters | ||
---------- | ||
folder : str | ||
Folder of the saved model | ||
spark_session : pyspark.sql.SparkSession | ||
The current SparkSession | ||
Returns | ||
------- | ||
SnowFlakeEmbeddings | ||
The restored model | ||
""" | ||
from sparknlp.internal import _SnowFlakeEmbeddingsLoader | ||
jModel = _SnowFlakeEmbeddingsLoader(folder, spark_session._jsparkSession)._java_obj | ||
return SnowFlakeEmbeddings(java_model=jModel) | ||
|
||
@staticmethod | ||
def pretrained(name="snowflake_artic_m", lang="en", remote_loc=None): | ||
"""Downloads and loads a pretrained model. | ||
Parameters | ||
---------- | ||
name : str, optional | ||
Name of the pretrained model, by default "snowflake_artic_m" | ||
lang : str, optional | ||
Language of the pretrained model, by default "en" | ||
remote_loc : str, optional | ||
Optional remote address of the resource, by default None. Will use | ||
Spark NLPs repositories otherwise. | ||
Returns | ||
------- | ||
SnowFlakeEmbeddings | ||
The restored model | ||
""" | ||
from sparknlp.pretrained import ResourceDownloader | ||
return ResourceDownloader.downloadModel(SnowFlakeEmbeddings, name, lang, remote_loc) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
50 changes: 50 additions & 0 deletions
50
python/test/annotator/embeddings/snowflake_embeddings_test.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,50 @@ | ||
# Copyright 2017-2022 John Snow Labs | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
import unittest | ||
|
||
import pytest | ||
import os | ||
|
||
from sparknlp.annotator import * | ||
from sparknlp.base import * | ||
from test.util import SparkContextForTest | ||
|
||
|
||
@pytest.mark.slow | ||
class SnowFlakeEmbeddingsTestSpec(unittest.TestCase): | ||
def setUp(self): | ||
self.spark = SparkContextForTest.spark | ||
self.tested_annotator = SnowFlakeEmbeddings \ | ||
.loadSavedModel("1", | ||
SparkContextForTest.spark) \ | ||
.setInputCols(["documents"]) \ | ||
.setOutputCol("embeddings") \ | ||
.setPoolingStrategy("cls_avg") | ||
|
||
def test_run(self): | ||
data = SparkContextForTest.spark.read.option("header", "true") \ | ||
.csv(path="file:///" + os.getcwd() + "/../src/test/resources/embeddings/sentence_embeddings.csv") | ||
|
||
document_assembler = DocumentAssembler() \ | ||
.setInputCol("text") \ | ||
.setOutputCol("documents") | ||
|
||
embeddings_finisher = EmbeddingsFinisher().setInputCols("embeddings").setOutputCols("embeddings") | ||
|
||
snowflake = self.tested_annotator | ||
|
||
pipeline = Pipeline().setStages([document_assembler, snowflake, embeddings_finisher]) | ||
results = pipeline.fit(data).transform(data) | ||
|
||
results.selectExpr("explode(embeddings) as result").show(truncate=False) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.