Skip to content

Commit

Permalink
Merge pull request #14117 from JohnSnowLabs/release/522-release-candi…
Browse files Browse the repository at this point in the history
…date

Release/522 release candidate
  • Loading branch information
maziyarpanahi authored Jan 1, 2024
2 parents a16646f + 40f35ad commit 587f790
Show file tree
Hide file tree
Showing 1,493 changed files with 7,796 additions and 4,953 deletions.
17 changes: 16 additions & 1 deletion CHANGELOG
Original file line number Diff line number Diff line change
@@ -1,3 +1,19 @@
========
5.2.1
========
----------------
Enhancements
----------------
* Update `aws-java-sdk-bundle` dependency to a version without any CVEs

----------------
Bug Fixes
----------------
* Fix the missing `BGEEmbeddings` from annotator in Python
* Add a new BGE notebook to import models into Spark NLP
* Upload the new true `BGE` models to Spark NLP for text embeddings


========
5.2.1
========
Expand All @@ -14,7 +30,6 @@ New Features & Enhancements
* Add a new notebook to show how to import any model from `T5` family into Spark NLP with ONNX format
* Add a new notebook to show how to import any model from `MarianNMT` family into Spark NLP with ONNX format


----------------
Bug Fixes
----------------
Expand Down
88 changes: 44 additions & 44 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -173,7 +173,7 @@ To use Spark NLP you need the following requirements:

**GPU (optional):**

Spark NLP 5.2.1 is built with ONNX 1.16.3 and TensorFlow 2.7.1 deep learning engines. The minimum following NVIDIA® software are only required for GPU support:
Spark NLP 5.2.2 is built with ONNX 1.16.3 and TensorFlow 2.7.1 deep learning engines. The minimum following NVIDIA® software are only required for GPU support:

- NVIDIA® GPU drivers version 450.80.02 or higher
- CUDA® Toolkit 11.2
Expand All @@ -189,7 +189,7 @@ $ java -version
$ conda create -n sparknlp python=3.7 -y
$ conda activate sparknlp
# spark-nlp by default is based on pyspark 3.x
$ pip install spark-nlp==5.2.1 pyspark==3.3.1
$ pip install spark-nlp==5.2.2 pyspark==3.3.1
```

In Python console or Jupyter `Python3` kernel:
Expand Down Expand Up @@ -234,7 +234,7 @@ For more examples, you can visit our dedicated [examples](https://github.com/Joh

## Apache Spark Support

Spark NLP *5.2.1* has been built on top of Apache Spark 3.4 while fully supports Apache Spark 3.0.x, 3.1.x, 3.2.x, 3.3.x, 3.4.x, and 3.5.x
Spark NLP *5.2.2* has been built on top of Apache Spark 3.4 while fully supports Apache Spark 3.0.x, 3.1.x, 3.2.x, 3.3.x, 3.4.x, and 3.5.x

| Spark NLP | Apache Spark 3.5.x | Apache Spark 3.4.x | Apache Spark 3.3.x | Apache Spark 3.2.x | Apache Spark 3.1.x | Apache Spark 3.0.x | Apache Spark 2.4.x | Apache Spark 2.3.x |
|-----------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
Expand Down Expand Up @@ -276,7 +276,7 @@ Find out more about `Spark NLP` versions from our [release notes](https://github

## Databricks Support

Spark NLP 5.2.1 has been tested and is compatible with the following runtimes:
Spark NLP 5.2.2 has been tested and is compatible with the following runtimes:

**CPU:**

Expand Down Expand Up @@ -343,7 +343,7 @@ Spark NLP 5.2.1 has been tested and is compatible with the following runtimes:

## EMR Support

Spark NLP 5.2.1 has been tested and is compatible with the following EMR releases:
Spark NLP 5.2.2 has been tested and is compatible with the following EMR releases:

- emr-6.2.0
- emr-6.3.0
Expand Down Expand Up @@ -390,11 +390,11 @@ Spark NLP supports all major releases of Apache Spark 3.0.x, Apache Spark 3.1.x,
```sh
# CPU

spark-shell --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.1
spark-shell --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.2

pyspark --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.1
pyspark --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.2

spark-submit --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.1
spark-submit --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.2
```

The `spark-nlp` has been published to
Expand All @@ -403,11 +403,11 @@ the [Maven Repository](https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/s
```sh
# GPU

spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:5.2.1
spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:5.2.2

pyspark --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:5.2.1
pyspark --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:5.2.2

spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:5.2.1
spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:5.2.2

```

Expand All @@ -417,11 +417,11 @@ the [Maven Repository](https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/s
```sh
# AArch64

spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:5.2.1
spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:5.2.2

pyspark --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:5.2.1
pyspark --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:5.2.2

spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:5.2.1
spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:5.2.2

```

Expand All @@ -431,11 +431,11 @@ the [Maven Repository](https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/s
```sh
# M1/M2 (Apple Silicon)

spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:5.2.1
spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:5.2.2

pyspark --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:5.2.1
pyspark --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:5.2.2

spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:5.2.1
spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:5.2.2

```

Expand All @@ -449,7 +449,7 @@ set in your SparkSession:
spark-shell \
--driver-memory 16g \
--conf spark.kryoserializer.buffer.max=2000M \
--packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.1
--packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.2
```

## Scala
Expand All @@ -467,7 +467,7 @@ coordinates:
<dependency>
<groupId>com.johnsnowlabs.nlp</groupId>
<artifactId>spark-nlp_2.12</artifactId>
<version>5.2.1</version>
<version>5.2.2</version>
</dependency>
```

Expand All @@ -478,7 +478,7 @@ coordinates:
<dependency>
<groupId>com.johnsnowlabs.nlp</groupId>
<artifactId>spark-nlp-gpu_2.12</artifactId>
<version>5.2.1</version>
<version>5.2.2</version>
</dependency>
```

Expand All @@ -489,7 +489,7 @@ coordinates:
<dependency>
<groupId>com.johnsnowlabs.nlp</groupId>
<artifactId>spark-nlp-aarch64_2.12</artifactId>
<version>5.2.1</version>
<version>5.2.2</version>
</dependency>
```

Expand All @@ -500,7 +500,7 @@ coordinates:
<dependency>
<groupId>com.johnsnowlabs.nlp</groupId>
<artifactId>spark-nlp-silicon_2.12</artifactId>
<version>5.2.1</version>
<version>5.2.2</version>
</dependency>
```

Expand All @@ -510,28 +510,28 @@ coordinates:

```sbtshell
// https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp
libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp" % "5.2.1"
libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp" % "5.2.2"
```

**spark-nlp-gpu:**

```sbtshell
// https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp-gpu
libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-gpu" % "5.2.1"
libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-gpu" % "5.2.2"
```

**spark-nlp-aarch64:**

```sbtshell
// https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp-aarch64
libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-aarch64" % "5.2.1"
libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-aarch64" % "5.2.2"
```

**spark-nlp-silicon:**

```sbtshell
// https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp-silicon
libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-silicon" % "5.2.1"
libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-silicon" % "5.2.2"
```

Maven
Expand All @@ -553,7 +553,7 @@ If you installed pyspark through pip/conda, you can install `spark-nlp` through
Pip:

```bash
pip install spark-nlp==5.2.1
pip install spark-nlp==5.2.2
```

Conda:
Expand Down Expand Up @@ -582,7 +582,7 @@ spark = SparkSession.builder
.config("spark.driver.memory", "16G")
.config("spark.driver.maxResultSize", "0")
.config("spark.kryoserializer.buffer.max", "2000M")
.config("spark.jars.packages", "com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.1")
.config("spark.jars.packages", "com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.2")
.getOrCreate()
```

Expand Down Expand Up @@ -653,7 +653,7 @@ Use either one of the following options
- Add the following Maven Coordinates to the interpreter's library list

```bash
com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.1
com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.2
```

- Add a path to pre-built jar from [here](#compiled-jars) in the interpreter's library list making sure the jar is
Expand All @@ -664,7 +664,7 @@ com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.1
Apart from the previous step, install the python module through pip

```bash
pip install spark-nlp==5.2.1
pip install spark-nlp==5.2.2
```

Or you can install `spark-nlp` from inside Zeppelin by using Conda:
Expand Down Expand Up @@ -692,7 +692,7 @@ launch the Jupyter from the same Python environment:
$ conda create -n sparknlp python=3.8 -y
$ conda activate sparknlp
# spark-nlp by default is based on pyspark 3.x
$ pip install spark-nlp==5.2.1 pyspark==3.3.1 jupyter
$ pip install spark-nlp==5.2.2 pyspark==3.3.1 jupyter
$ jupyter notebook
```

Expand All @@ -709,7 +709,7 @@ export PYSPARK_PYTHON=python3
export PYSPARK_DRIVER_PYTHON=jupyter
export PYSPARK_DRIVER_PYTHON_OPTS=notebook

pyspark --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.1
pyspark --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.2
```

Alternatively, you can mix in using `--jars` option for pyspark + `pip install spark-nlp`
Expand All @@ -736,7 +736,7 @@ This script comes with the two options to define `pyspark` and `spark-nlp` versi
# -s is for spark-nlp
# -g will enable upgrading libcudnn8 to 8.1.0 on Google Colab for GPU usage
# by default they are set to the latest
!wget https://setup.johnsnowlabs.com/colab.sh -O - | bash /dev/stdin -p 3.2.3 -s 5.2.1
!wget https://setup.johnsnowlabs.com/colab.sh -O - | bash /dev/stdin -p 3.2.3 -s 5.2.2
```

[Spark NLP quick start on Google Colab](https://colab.research.google.com/github/JohnSnowLabs/spark-nlp/blob/master/examples/python/quick_start_google_colab.ipynb)
Expand All @@ -759,7 +759,7 @@ This script comes with the two options to define `pyspark` and `spark-nlp` versi
# -s is for spark-nlp
# -g will enable upgrading libcudnn8 to 8.1.0 on Kaggle for GPU usage
# by default they are set to the latest
!wget https://setup.johnsnowlabs.com/colab.sh -O - | bash /dev/stdin -p 3.2.3 -s 5.2.1
!wget https://setup.johnsnowlabs.com/colab.sh -O - | bash /dev/stdin -p 3.2.3 -s 5.2.2
```

[Spark NLP quick start on Kaggle Kernel](https://www.kaggle.com/mozzie/spark-nlp-named-entity-recognition) is a live
Expand All @@ -778,9 +778,9 @@ demo on Kaggle Kernel that performs named entity recognitions by using Spark NLP

3. In `Libraries` tab inside your cluster you need to follow these steps:

3.1. Install New -> PyPI -> `spark-nlp==5.2.1` -> Install
3.1. Install New -> PyPI -> `spark-nlp==5.2.2` -> Install

3.2. Install New -> Maven -> Coordinates -> `com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.1` -> Install
3.2. Install New -> Maven -> Coordinates -> `com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.2` -> Install

4. Now you can attach your notebook to the cluster and use Spark NLP!

Expand Down Expand Up @@ -831,7 +831,7 @@ A sample of your software configuration in JSON on S3 (must be public access):
"spark.kryoserializer.buffer.max": "2000M",
"spark.serializer": "org.apache.spark.serializer.KryoSerializer",
"spark.driver.maxResultSize": "0",
"spark.jars.packages": "com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.1"
"spark.jars.packages": "com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.2"
}
}]
```
Expand All @@ -840,7 +840,7 @@ A sample of AWS CLI to launch EMR cluster:
```.sh
aws emr create-cluster \
--name "Spark NLP 5.2.1" \
--name "Spark NLP 5.2.2" \
--release-label emr-6.2.0 \
--applications Name=Hadoop Name=Spark Name=Hive \
--instance-type m4.4xlarge \
Expand Down Expand Up @@ -904,7 +904,7 @@ gcloud dataproc clusters create ${CLUSTER_NAME} \
--enable-component-gateway \
--metadata 'PIP_PACKAGES=spark-nlp spark-nlp-display google-cloud-bigquery google-cloud-storage' \
--initialization-actions gs://goog-dataproc-initialization-actions-${REGION}/python/pip-install.sh \
--properties spark:spark.serializer=org.apache.spark.serializer.KryoSerializer,spark:spark.driver.maxResultSize=0,spark:spark.kryoserializer.buffer.max=2000M,spark:spark.jars.packages=com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.1
--properties spark:spark.serializer=org.apache.spark.serializer.KryoSerializer,spark:spark.driver.maxResultSize=0,spark:spark.kryoserializer.buffer.max=2000M,spark:spark.jars.packages=com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.2
```
2. On an existing one, you need to install spark-nlp and spark-nlp-display packages from PyPI.
Expand Down Expand Up @@ -947,7 +947,7 @@ spark = SparkSession.builder
.config("spark.kryoserializer.buffer.max", "2000m")
.config("spark.jsl.settings.pretrained.cache_folder", "sample_data/pretrained")
.config("spark.jsl.settings.storage.cluster_tmp_dir", "sample_data/storage")
.config("spark.jars.packages", "com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.1")
.config("spark.jars.packages", "com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.2")
.getOrCreate()
```
Expand All @@ -961,7 +961,7 @@ spark-shell \
--conf spark.kryoserializer.buffer.max=2000M \
--conf spark.jsl.settings.pretrained.cache_folder="sample_data/pretrained" \
--conf spark.jsl.settings.storage.cluster_tmp_dir="sample_data/storage" \
--packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.1
--packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.2
```
**pyspark:**
Expand All @@ -974,7 +974,7 @@ pyspark \
--conf spark.kryoserializer.buffer.max=2000M \
--conf spark.jsl.settings.pretrained.cache_folder="sample_data/pretrained" \
--conf spark.jsl.settings.storage.cluster_tmp_dir="sample_data/storage" \
--packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.1
--packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.2.2
```
**Databricks:**
Expand Down Expand Up @@ -1246,7 +1246,7 @@ spark = SparkSession.builder
.config("spark.driver.memory", "16G")
.config("spark.driver.maxResultSize", "0")
.config("spark.kryoserializer.buffer.max", "2000M")
.config("spark.jars", "/tmp/spark-nlp-assembly-5.2.1.jar")
.config("spark.jars", "/tmp/spark-nlp-assembly-5.2.2.jar")
.getOrCreate()
```
Expand All @@ -1255,7 +1255,7 @@ spark = SparkSession.builder
version (3.0.x, 3.1.x, 3.2.x, 3.3.x, 3.4.x, and 3.5.x)
- If you are local, you can load the Fat JAR from your local FileSystem, however, if you are in a cluster setup you need
to put the Fat JAR on a distributed FileSystem such as HDFS, DBFS, S3, etc. (
i.e., `hdfs:///tmp/spark-nlp-assembly-5.2.1.jar`)
i.e., `hdfs:///tmp/spark-nlp-assembly-5.2.2.jar`)
Example of using pretrained Models and Pipelines in offline:
Expand Down
5 changes: 2 additions & 3 deletions build.sbt
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@ name := getPackageName(is_silicon, is_gpu, is_aarch64)

organization := "com.johnsnowlabs.nlp"

version := "5.2.1"
version := "5.2.2"

(ThisBuild / scalaVersion) := scalaVer

Expand Down Expand Up @@ -153,8 +153,7 @@ lazy val utilDependencies = Seq(
gcpStorage,
greex,
azureIdentity,
azureStorage
)
azureStorage)

lazy val typedDependencyParserDependencies = Seq(junit)

Expand Down
Loading

0 comments on commit 587f790

Please sign in to comment.