-
Notifications
You must be signed in to change notification settings - Fork 718
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
SparkNLP 1043 integrate new casual lm annotators to use open vino (#1…
…4319) * Phi2 scala api * Phi2 python api * Phi2 python and scala tests * Phi2 python and scala tests * added M2M100 openvino implementation * added phi2 openvino implementation * added openvino flag to python --------- Co-authored-by: Maziyar Panahi <[email protected]>
- Loading branch information
1 parent
4583ccf
commit cdb031a
Showing
14 changed files
with
1,692 additions
and
45 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,326 @@ | ||
# Copyright 2017-2022 John Snow Labs | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
"""Contains classes for the Phi2Transformer.""" | ||
|
||
from sparknlp.common import * | ||
|
||
|
||
class Phi2Transformer(AnnotatorModel, HasBatchedAnnotate, HasEngine): | ||
"""Phi-2: Textbooks Are All You Need. | ||
Phi-2 is a Transformer with 2.7 billion parameters. It was trained using the same data sources as Phi-1.5, | ||
augmented with a new data source that consists of various NLP synthetic texts and filtered websites | ||
(for safety and educational value). When assessed against benchmarks testing common sense, language understanding, | ||
and logical reasoning, Phi-2 showcased a nearly state-of-the-art performance among models with less than 13 billion | ||
parameters. | ||
Phi-2 hasn't been fine-tuned through reinforcement learning from human feedback. The intention behind crafting | ||
this open-source model is to provide the research community with a non-restricted small model to explore vital | ||
safety challenges, such as reducing toxicity, understanding societal biases, enhancing controllability, and more. | ||
Pretrained models can be loaded with :meth:`.pretrained` of the companion | ||
object: | ||
>>> phi2 = Phi2Transformer.pretrained() \\ | ||
... .setInputCols(["document"]) \\ | ||
... .setOutputCol("generation") | ||
The default model is ``"llam2-7b"``, if no name is provided. For available | ||
pretrained models please see the `Models Hub | ||
<https://sparknlp.org/models?q=phi2>`__. | ||
====================== ====================== | ||
Input Annotation types Output Annotation type | ||
====================== ====================== | ||
``DOCUMENT`` ``DOCUMENT`` | ||
====================== ====================== | ||
Parameters | ||
---------- | ||
configProtoBytes | ||
ConfigProto from tensorflow, serialized into byte array. | ||
minOutputLength | ||
Minimum length of the sequence to be generated, by default 0 | ||
maxOutputLength | ||
Maximum length of output text, by default 20 | ||
doSample | ||
Whether or not to use sampling; use greedy decoding otherwise, by default False | ||
temperature | ||
The value used to module the next token probabilities, by default 1.0 | ||
topK | ||
The number of highest probability vocabulary tokens to keep for | ||
top-k-filtering, by default 50 | ||
topP | ||
Top cumulative probability for vocabulary tokens, by default 1.0 | ||
If set to float < 1, only the most probable tokens with probabilities | ||
that add up to ``topP`` or higher are kept for generation. | ||
repetitionPenalty | ||
The parameter for repetition penalty, 1.0 means no penalty. , by default | ||
1.0 | ||
noRepeatNgramSize | ||
If set to int > 0, all ngrams of that size can only occur once, by | ||
default 0 | ||
ignoreTokenIds | ||
A list of token ids which are ignored in the decoder's output, by | ||
default [] | ||
Notes | ||
----- | ||
This is a very computationally expensive module especially on larger | ||
sequence. The use of an accelerator such as GPU is recommended. | ||
References | ||
---------- | ||
- `Phi-2: Textbooks Are All You Need. | ||
<https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/>`__ | ||
- https://huggingface.co/microsoft/phi-2 | ||
**Paper Abstract:** | ||
*In this work, we develop and release Llama 2, a collection of pretrained and fine-tuned | ||
large language models (LLMs) ranging in scale from 7 billion to 70 billion parameters. Our | ||
fine-tuned LLMs, called Llama 2-Chat, are optimized for dialogue use cases. Our models | ||
outperform open-source chat models on most benchmarks we tested, and based on our human | ||
evaluations for helpfulness and safety, may be a suitable substitute for closed-source models. | ||
We provide a detailed description of our approach to fine-tuning and safety improvements of | ||
Llama 2-Chat in order to enable the community to build on our work and contribute to the | ||
responsible development of LLMs.* | ||
Examples | ||
-------- | ||
>>> import sparknlp | ||
>>> from sparknlp.base import * | ||
>>> from sparknlp.annotator import * | ||
>>> from pyspark.ml import Pipeline | ||
>>> documentAssembler = DocumentAssembler() \\ | ||
... .setInputCol("text") \\ | ||
... .setOutputCol("documents") | ||
>>> phi2 = Phi2Transformer.pretrained("phi2-7b") \\ | ||
... .setInputCols(["documents"]) \\ | ||
... .setMaxOutputLength(50) \\ | ||
... .setOutputCol("generation") | ||
>>> pipeline = Pipeline().setStages([documentAssembler, phi2]) | ||
>>> data = spark.createDataFrame([["My name is Leonardo."]]).toDF("text") | ||
>>> result = pipeline.fit(data).transform(data) | ||
>>> result.select("summaries.generation").show(truncate=False) | ||
+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ | ||
|result | | ||
+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ | ||
|[My name is Leonardo . I am a student of the University of California, Berkeley. I am interested in the field of Artificial Intelligence and its applications in the real world. I have a strong | | ||
| passion for learning and am always looking for ways to improve my knowledge and skills] | | ||
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ | ||
""" | ||
|
||
name = "Phi2Transformer" | ||
|
||
inputAnnotatorTypes = [AnnotatorType.DOCUMENT] | ||
|
||
outputAnnotatorType = AnnotatorType.DOCUMENT | ||
|
||
configProtoBytes = Param(Params._dummy(), "configProtoBytes", | ||
"ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()", | ||
TypeConverters.toListInt) | ||
|
||
minOutputLength = Param(Params._dummy(), "minOutputLength", "Minimum length of the sequence to be generated", | ||
typeConverter=TypeConverters.toInt) | ||
|
||
maxOutputLength = Param(Params._dummy(), "maxOutputLength", "Maximum length of output text", | ||
typeConverter=TypeConverters.toInt) | ||
|
||
doSample = Param(Params._dummy(), "doSample", "Whether or not to use sampling; use greedy decoding otherwise", | ||
typeConverter=TypeConverters.toBoolean) | ||
|
||
temperature = Param(Params._dummy(), "temperature", "The value used to module the next token probabilities", | ||
typeConverter=TypeConverters.toFloat) | ||
|
||
topK = Param(Params._dummy(), "topK", | ||
"The number of highest probability vocabulary tokens to keep for top-k-filtering", | ||
typeConverter=TypeConverters.toInt) | ||
|
||
topP = Param(Params._dummy(), "topP", | ||
"If set to float < 1, only the most probable tokens with probabilities that add up to ``top_p`` or higher are kept for generation", | ||
typeConverter=TypeConverters.toFloat) | ||
|
||
repetitionPenalty = Param(Params._dummy(), "repetitionPenalty", | ||
"The parameter for repetition penalty. 1.0 means no penalty. See `this paper <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details", | ||
typeConverter=TypeConverters.toFloat) | ||
|
||
noRepeatNgramSize = Param(Params._dummy(), "noRepeatNgramSize", | ||
"If set to int > 0, all ngrams of that size can only occur once", | ||
typeConverter=TypeConverters.toInt) | ||
|
||
ignoreTokenIds = Param(Params._dummy(), "ignoreTokenIds", | ||
"A list of token ids which are ignored in the decoder's output", | ||
typeConverter=TypeConverters.toListInt) | ||
|
||
def setIgnoreTokenIds(self, value): | ||
"""A list of token ids which are ignored in the decoder's output. | ||
Parameters | ||
---------- | ||
value : List[int] | ||
The words to be filtered out | ||
""" | ||
return self._set(ignoreTokenIds=value) | ||
|
||
def setConfigProtoBytes(self, b): | ||
"""Sets configProto from tensorflow, serialized into byte array. | ||
Parameters | ||
---------- | ||
b : List[int] | ||
ConfigProto from tensorflow, serialized into byte array | ||
""" | ||
return self._set(configProtoBytes=b) | ||
|
||
def setMinOutputLength(self, value): | ||
"""Sets minimum length of the sequence to be generated. | ||
Parameters | ||
---------- | ||
value : int | ||
Minimum length of the sequence to be generated | ||
""" | ||
return self._set(minOutputLength=value) | ||
|
||
def setMaxOutputLength(self, value): | ||
"""Sets maximum length of output text. | ||
Parameters | ||
---------- | ||
value : int | ||
Maximum length of output text | ||
""" | ||
return self._set(maxOutputLength=value) | ||
|
||
def setDoSample(self, value): | ||
"""Sets whether or not to use sampling, use greedy decoding otherwise. | ||
Parameters | ||
---------- | ||
value : bool | ||
Whether or not to use sampling; use greedy decoding otherwise | ||
""" | ||
return self._set(doSample=value) | ||
|
||
def setTemperature(self, value): | ||
"""Sets the value used to module the next token probabilities. | ||
Parameters | ||
---------- | ||
value : float | ||
The value used to module the next token probabilities | ||
""" | ||
return self._set(temperature=value) | ||
|
||
def setTopK(self, value): | ||
"""Sets the number of highest probability vocabulary tokens to keep for | ||
top-k-filtering. | ||
Parameters | ||
---------- | ||
value : int | ||
Number of highest probability vocabulary tokens to keep | ||
""" | ||
return self._set(topK=value) | ||
|
||
def setTopP(self, value): | ||
"""Sets the top cumulative probability for vocabulary tokens. | ||
If set to float < 1, only the most probable tokens with probabilities | ||
that add up to ``topP`` or higher are kept for generation. | ||
Parameters | ||
---------- | ||
value : float | ||
Cumulative probability for vocabulary tokens | ||
""" | ||
return self._set(topP=value) | ||
|
||
def setRepetitionPenalty(self, value): | ||
"""Sets the parameter for repetition penalty. 1.0 means no penalty. | ||
Parameters | ||
---------- | ||
value : float | ||
The repetition penalty | ||
References | ||
---------- | ||
See `Ctrl: A Conditional Transformer Language Model For Controllable | ||
Generation <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details. | ||
""" | ||
return self._set(repetitionPenalty=value) | ||
|
||
def setNoRepeatNgramSize(self, value): | ||
"""Sets size of n-grams that can only occur once. | ||
If set to int > 0, all ngrams of that size can only occur once. | ||
Parameters | ||
---------- | ||
value : int | ||
N-gram size can only occur once | ||
""" | ||
return self._set(noRepeatNgramSize=value) | ||
|
||
@keyword_only | ||
def __init__(self, classname="com.johnsnowlabs.nlp.annotators.seq2seq.Phi2Transformer", java_model=None): | ||
super(Phi2Transformer, self).__init__(classname=classname, java_model=java_model) | ||
self._setDefault(minOutputLength=0, maxOutputLength=20, doSample=False, temperature=0.6, topK=50, topP=0.9, | ||
repetitionPenalty=1.0, noRepeatNgramSize=0, ignoreTokenIds=[], batchSize=1) | ||
|
||
@staticmethod | ||
def loadSavedModel(folder, spark_session, use_openvino=False): | ||
"""Loads a locally saved model. | ||
Parameters | ||
---------- | ||
folder : str | ||
Folder of the saved model | ||
spark_session : pyspark.sql.SparkSession | ||
The current SparkSession | ||
Returns | ||
------- | ||
Phi2Transformer | ||
The restored model | ||
""" | ||
from sparknlp.internal import _Phi2Loader | ||
jModel = _Phi2Loader(folder, spark_session._jsparkSession, use_openvino)._java_obj | ||
return Phi2Transformer(java_model=jModel) | ||
|
||
@staticmethod | ||
def pretrained(name="phi2-7b", lang="en", remote_loc=None): | ||
"""Downloads and loads a pretrained model. | ||
Parameters | ||
---------- | ||
name : str, optional | ||
Name of the pretrained model, by default "phi2-7b" | ||
lang : str, optional | ||
Language of the pretrained model, by default "en" | ||
remote_loc : str, optional | ||
Optional remote address of the resource, by default None. Will use | ||
Spark NLPs repositories otherwise. | ||
Returns | ||
------- | ||
Phi2Transformer | ||
The restored model | ||
""" | ||
from sparknlp.pretrained import ResourceDownloader | ||
return ResourceDownloader.downloadModel(Phi2Transformer, name, lang, remote_loc) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.