Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

High Level Wrapper for Fused Matmul + Bias + Activation #2360

Draft
wants to merge 1 commit into
base: master
Choose a base branch
from
Draft
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
97 changes: 97 additions & 0 deletions lib/cublas/wrappers.jl
Original file line number Diff line number Diff line change
Expand Up @@ -2444,3 +2444,100 @@ function xt_trsm(side::Char, uplo::Char, transa::Char, diag::Char, alpha::Number
# TODO: better way to perform synchronous copy
xt_trsm!(side, uplo, transa, diag, alpha, A, @sync(copy(B)))
end

# TODO: use https://docs.nvidia.com/cuda/cublas/#cublasltmatmul for a more robust
# computeType mapping. Currently no one uses Lux with weird type combinations so we
# don't need to worry about it too much and just fall back to the generic
# implementation
# Computes C = act(α * A * B + β * C + bias)
# intermediates can be stored in `aux` if provided.
# If we fail to find and appropriate algorithm and need to terminate, we return -1
function gemmBiasCublasLt!(transA::Char, transB::Char, transC::Char, alpha::Number,
A::StridedCuMatrix{aT}, B::StridedCuMatrix{bT}, beta::Number,
C::StridedCuMatrix{cT}, σ::F,
bias::Union{Nothing, StridedCuVector},
aux::Union{Nothing, StridedCuMatrix} = nothing) where {F, aT, bT, cT}
m, n = size(C)
k = size(A, 2)

# TODO: size check for the bias term
# TODO: General size check

operationDesc = Ref{cublasLtMatmulDesc_t}()

## While querying the compute type, promote the types
computeType = gemmExComputeType(cT, aT, bT, m, k, n)
computeType === nothing && return -1
dataType = convert(CUDA.cudaDataType, yT)
cublasLtMatmulDescCreate(operationDesc, computeType, dataType)

# Set the matrix descriptors
Atransop = transA == 'N' ? CUBLAS_OP_N : CUBLAS_OP_T
Btransop = transB == 'N' ? CUBLAS_OP_N : CUBLAS_OP_T
Ctransop = transC == 'N' ? CUBLAS_OP_N : CUBLAS_OP_T

cublasLtMatmulDescSetAttribute(operationDesc, CUBLASLT_MATMUL_DESC_TRANSA,
Ref{cublasOperation_t}(Atransop), sizeof(Atransop))
cublasLtMatmulDescSetAttribute(operationDesc, CUBLASLT_MATMUL_DESC_TRANSB,
Ref{cublasOperation_t}(Btransop), sizeof(Btransop))
cublasLtMatmulDescSetAttribute(operationDesc, CUBLASLT_MATMUL_DESC_TRANSC,
Ref{cublasOperation_t}(Ctransop), sizeof(Ctransop))

# Decide on the epilogue
# epilogue, activation_fused = __epilogue_act(σ, b, aux)
# CUBLAS.cublasLtMatmulDescSetAttribute(
# operationDesc[], CUBLAS.CUBLASLT_MATMUL_DESC_EPILOGUE,
# Ref{CUBLAS.cublasLtEpilogue_t}(epilogue), sizeof(epilogue))

# # We have a bias so set the bias pointer
# if b !== nothing
# bias_ptr = Ref{CuPtr{Cvoid}}(pointer(b))
# CUBLAS.cublasLtMatmulDescSetAttribute(
# operationDesc[], CUBLAS.CUBLASLT_MATMUL_DESC_BIAS_POINTER,
# bias_ptr, sizeof(bias_ptr))
# end

# if aux !== nothing
# aux_ptr = Ref{CuPtr{Cvoid}}(pointer(aux))
# CUBLAS.cublasLtMatmulDescSetAttribute(
# operationDesc[], CUBLAS.CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER,
# aux_ptr, sizeof(aux_ptr))
# ldaux = max(1, stride(aux, 2))
# CUBLAS.cublasLtMatmulDescSetAttribute(
# operationDesc[], CUBLAS.CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_LD,
# Ref{Csize_t}(ldaux), sizeof(ldaux))
# end

# Create the Matrix Layouts
Adesc = Ref{cublasLtMatrixLayout_t}()
Bdesc = Ref{cublasLtMatrixLayout_t}()
Cdesc = Ref{cublasLtMatrixLayout_t}()
cublasLtMatrixLayoutCreate(Adesc, convert(CUDA.cudaDataType, aT), m, k, max(1, stride(A, 2)))
cublasLtMatrixLayoutCreate(Bdesc, convert(CUDA.cudaDataType, bT), k, n, max(1, stride(B, 2)))
cublasLtMatrixLayoutCreate(Cdesc, convert(CUDA.cudaDataType, cT), m, n, max(1, stride(C, 2)))

# Create the preference
preference = Ref{cublasLtMatmulPreference_t}()
cublasLtMatmulPreferenceCreate(preference)

# Create the light handle
lightHandle = Ref{cublasLtHandle_t}()
cublasLtCreate(lightHandle)

# Search for the best algorithm
heuristic = Ref{cublasLtMatmulHeuristicResult_t}()
returnedResults = Ref{Cint}(0)
cublasLtMatmulHeuristicSearch(lightHandle[], operationDesc[], preference[], Adesc[],
Bdesc[], Cdesc[], Cdesc[], preference[], 1, heuristic,
returnedResults)

returnedResults[] == 0 || return -1

cublasLtMatmul(lightHandle[], operationDesc[], Ref{typeof(α)}(α), A, Adesc[], B,
Bdesc[], Ref{typeof(β)}(β), C, Cdesc[], C, Cdesc[],
Ref(heuristic[].algo), CU_NULL, 0, CUDA.stream())

# !activation_fused && (C .= σ.(C))

return 0
end