Skip to content

[ICCV 2023] Joint Demosaicing and Deghosting of Time-Varying Exposures for Single-Shot HDR Imaging

Notifications You must be signed in to change notification settings

KAIST-VCLAB/singshot-hdr-demosaicing

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Joint Demosaicing and Deghosting of Time-Varying Exposures for Single-Shot HDR Imaging

Jungwoo Kim, Min H. Kim KAIST

Tested Environments

  • OS: Ubuntu 16.04 / Windows 10
  • Graphic card: TITAN RTX / RTX 2060
  • Cuda toolkit version: 10.2
  • NVIDIA Driver Version: 456.71
  • python: 3.7
  • torch version: 1.9.0

Installation

This repository is built in Pytorch 1.9.0 and tested on Ubuntu 16.04 enviornment (Python3.7, CUDA10.2, cuDNN7.6).

Please follow below instructions:

  1. Clone our repository
git clone [email protected]:KAIST-VCLAB/singshot-hdr-demosaicing.git
cd singshot-hdr-demosaicing
  1. Make conda enviornment
conda create -n pytorch190 python=3.7
conda activate pytorch190
  1. Install dependencies
conda install pytorch==1.9.0 torchvision==0.10.0 torchaudio==0.9.0 cudatoolkit=10.2 -c pytorch
pip install -r "requirements.txt"

Demo

First download our pretrained model and put best_psnr_mu.pt file in code/models/best_psnr_mu.pt.

To run demo with pre-trained models, run below code:

cd code
python test.py

About

[ICCV 2023] Joint Demosaicing and Deghosting of Time-Varying Exposures for Single-Shot HDR Imaging

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages