Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add working Onnxruntime Producer #254

Merged
merged 18 commits into from
May 8, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions code_generation/analysis_template.cxx
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,8 @@
#include "include/jets.hxx"
#include "include/lorentzvectors.hxx"
#include "include/met.hxx"
#include "include/ml.hxx"
#include "include/utility/OnnxSessionManager.hxx"
#include "include/metfilter.hxx"
#include "include/pairselection.hxx"
#include "include/tripleselection.hxx"
Expand Down Expand Up @@ -104,6 +106,9 @@ int main(int argc, char *argv[]) {
// file logging
Logger::enableFileLogging("logs/main.txt");

// start an onnx session manager
OnnxSessionManager onnxSessionManager;
harrypuuter marked this conversation as resolved.
Show resolved Hide resolved

// {MULTITHREADING}

// initialize df
Expand Down
5 changes: 5 additions & 0 deletions code_generation/analysis_template_friends.cxx
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,8 @@
#include "include/jets.hxx"
#include "include/lorentzvectors.hxx"
#include "include/met.hxx"
#include "include/ml.hxx"
#include "include/utility/OnnxSessionManager.hxx"
#include "include/metfilter.hxx"
#include "include/pairselection.hxx"
#include "include/physicsobjects.hxx"
Expand Down Expand Up @@ -131,6 +133,9 @@ int main(int argc, char *argv[]) {
// file logging
Logger::enableFileLogging("logs/main.txt");

// start an onnx session manager
OnnxSessionManager onnxSessionManager;

// {MULTITHREADING}

// build a tchain from input file with all friends
Expand Down
6 changes: 4 additions & 2 deletions code_generation/code_generation.py
Original file line number Diff line number Diff line change
Expand Up @@ -107,7 +107,9 @@ def write(self):
log.debug("folder: {}, file_name: {}".format(self.folder, self.file_name))
# write the header file if it does not exist or is different
with open(self.headerfile + ".new", "w") as f:
f.write(f"ROOT::RDF::RNode {self.name}(ROOT::RDF::RNode df);")
f.write(
f"ROOT::RDF::RNode {self.name}(ROOT::RDF::RNode df, OnnxSessionManager &onnxSessionManager);"
)
if os.path.isfile(self.headerfile):
if filecmp.cmp(self.headerfile + ".new", self.headerfile):
log.debug("--> Identical header file, skipping")
Expand Down Expand Up @@ -144,7 +146,7 @@ def call(self, inputscope: str, outputscope: str) -> str:
Returns:
str: the call to the code subset
"""
call = f" auto {outputscope} = {self.name}({inputscope}); \n"
call = f" auto {outputscope} = {self.name}({inputscope}, onnxSessionManager); \n"
return call

def include(self) -> str:
Expand Down
4 changes: 3 additions & 1 deletion code_generation/subset_template.cxx
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,8 @@
#include "include/jets.hxx"
#include "include/lorentzvectors.hxx"
#include "include/met.hxx"
#include "include/ml.hxx"
#include "include/utility/OnnxSessionManager.hxx"
#include "include/metfilter.hxx"
#include "include/pairselection.hxx"
#include "include/tripleselection.hxx"
Expand All @@ -25,7 +27,7 @@
#include <TTree.h>
#include <regex>
#include <string>
ROOT::RDF::RNode {subsetname} (ROOT::RDF::RNode df0) {
ROOT::RDF::RNode {subsetname} (ROOT::RDF::RNode df0, OnnxSessionManager &onnxSessionManager) {

// { commands }
}
6 changes: 6 additions & 0 deletions docs/sphinx_source/c_namespaces/ml.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
Namespace: Basefunctions
========================
.. doxygennamespace:: ml
:members:
:undoc-members:
:private-members:
98 changes: 98 additions & 0 deletions include/ml.hxx
Original file line number Diff line number Diff line change
@@ -0,0 +1,98 @@
#ifndef GUARD_ML_H
#define GUARD_ML_H

#include "../include/utility/OnnxSessionManager.hxx"
#include "TMVA/RModel.hxx"
#include "TMVA/RModelParser_ONNX.hxx"
#include "utility/utility.hxx"
#include <cstddef>

namespace ml {

ROOT::RDF::RNode StandardTransformer(ROOT::RDF::RNode df,
const std::string &inputname,
const std::string &outputname,
const std::string &paramfile,
const std::string &var_type);

/// Generic Function to evaluate an ONNX model using the ONNX Runtime
/// Due to unknowns reasons, this function must be implemented inline in the
/// header file, otherwise the linker will complain about undefined references.
/// Moving the implementation to the source file will result in a linker error.
/// Why, I don't know...
/// This generic implementation currenty supports only NNs with one input tensor
/// and one output tensor
///
/// \param df the dataframe to add the quantity to
/// \param OnnxSessionManager The OnnxSessionManager object to handle the
/// runtime session. By default this is called onnxSessionManager and created in
/// the main function
/// \param outputname Name of the output column
/// \param model_file_path Path to the ONNX model file
/// \param input_vec Vector of input variable names,
/// the order of the variables must match the order of the input
/// nodes in the ONNX model
///
/// \returns a dataframe with the filter applied

template <std::size_t nParameters>
inline ROOT::RDF::RNode GenericOnnxEvaluator(
ROOT::RDF::RNode df, OnnxSessionManager &onnxSessionManager,
const std::string &outputname, const std::string &model_file_path,
const std::vector<std::string> &input_vec) {

std::vector<std::string> InputList;
for (auto i = 0; i < input_vec.size(); i++) {
InputList.push_back(std::string(input_vec[i]));
}

// print content of InputList
for (auto i = 0; i < InputList.size(); ++i) {
Logger::get("OnnxEvaluate")
->debug("input: {} ( {} / {} )", InputList[i], i + 1, nParameters);
}

if (nParameters != InputList.size()) {
Logger::get("OnnxEvaluate")
->error("Number of input parameters does not match the number of "
"input variables: {} vs {}",
nParameters, InputList.size());
throw std::runtime_error("Number of input parameters does not match");
}

// Load the model and create InferenceSession
std::vector<int64_t> input_node_dims;
std::vector<int64_t> output_node_dims;
int num_input_nodes;
int num_output_nodes;
Ort::AllocatorWithDefaultOptions allocator;

auto session = onnxSessionManager.getSession(model_file_path);

onnxhelper::prepare_model(session, allocator, input_node_dims,
output_node_dims, num_input_nodes,
num_output_nodes);

auto NNEvaluator = [session, allocator, input_node_dims, output_node_dims,
num_input_nodes,
num_output_nodes](std::vector<float> inputs) {
TStopwatch timer;
timer.Start();

std::vector<float> output = onnxhelper::run_interference(
session, allocator, inputs, input_node_dims, output_node_dims,
num_input_nodes, num_output_nodes);

timer.Stop();
Logger::get("OnnxEvaluate")
->debug("Inference time: {} mus", timer.RealTime() * 1000 * 1000);
return output;
};
auto df1 = df.Define(outputname,
utility::PassAsVec<nParameters, float>(NNEvaluator),
InputList);

return df1;
}
} // end namespace ml
#endif /* GUARD_ML_H */
57 changes: 57 additions & 0 deletions include/utility/OnnxSessionManager.hxx
Original file line number Diff line number Diff line change
@@ -0,0 +1,57 @@
#ifndef GUARD_SESSION_MANAGER
#define GUARD_SESSION_MANAGER

#include "Logger.hxx"
#include <memory>
#include <onnxruntime_cxx_api.h>
#include <string>
#include <unordered_map>

class OnnxSessionManager {
public:
OnnxSessionManager() {
OrtLoggingLevel logging_level =
ORT_LOGGING_LEVEL_WARNING; // ORT_LOGGING_LEVEL_VERBOSE

env = Ort::Env(logging_level, "Default");
session_options.SetInterOpNumThreads(1);
session_options.SetIntraOpNumThreads(1);
};
Ort::Session *getSession(const std::string &modelPath) {
// check if session already exists in the sessions map
if (sessions_map.count(modelPath) == 0) {
sessions_map[modelPath] = std::make_unique<Ort::Session>(
env, modelPath.c_str(), session_options);
Logger::get("OnnxSessionManager")
->info("Created session for model: {}", modelPath);
} else {
Logger::get("OnnxSessionManager")
->info("Session already exists for model: {}", modelPath);
}
return sessions_map[modelPath].get();
};

private:
std::unordered_map<std::string, std::unique_ptr<Ort::Session>> sessions_map;
Ort::Env env;
Ort::SessionOptions session_options;
};

namespace onnxhelper {
void prepare_model(Ort::Session *session,
Ort::AllocatorWithDefaultOptions allocator,
std::vector<int64_t> &input_node_dims,
std::vector<int64_t> &output_node_dims, int &num_input_nodes,
int &num_output_nodes);

std::vector<float> run_interference(Ort::Session *session,
Ort::AllocatorWithDefaultOptions allocator,
std::vector<float> &evt_input,
std::vector<int64_t> input_node_dims,
std::vector<int64_t> output_node_dims,
const int num_input_nodes,
const int num_output_nodes);

} // namespace onnxhelper

#endif /* GUARD_SESSION_MANAGER */
123 changes: 123 additions & 0 deletions src/ml.cxx
Original file line number Diff line number Diff line change
@@ -0,0 +1,123 @@
#ifndef GUARD_ML_H
#define GUARD_ML_H

#include "../include/basefunctions.hxx"
#include "../include/defaults.hxx"
#include "../include/utility/Logger.hxx"
#include "../include/utility/utility.hxx"
#include "../include/ml.hxx"
#include "../include/utility/OnnxSessionManager.hxx"
#include "../include/vectoroperations.hxx"
#include "ROOT/RDataFrame.hxx"
#include "ROOT/RVec.hxx"
#include <Math/Vector4D.h>
#include <Math/VectorUtil.h>

#include "TMVA/RModel.hxx"
#include "TInterpreter.h"
#include "TMVA/RModelParser_ONNX.hxx"
#include "TSystem.h"
#include <memory>
#include <onnxruntime_cxx_api.h>
#include <assert.h>
#include <filesystem>
#include <fstream>
#include <iostream>
#include <nlohmann/json.hpp>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <string>

using json = nlohmann::json;


namespace ml {
/**
* @brief Function to perform a standard transformation of input variables for
* NN evaluation.
*
* @param df The input dataframe
* @param inputname name of the variable which should be transformed
* @param outputname name of the output column
* @param param_file path to a json file with a dictionary of mean and std
* values
* @param var_type variable data type for correct processing e.g. "i" for
* integer or "f" for float
* @return a new dataframe containing the new column
*/
ROOT::RDF::RNode StandardTransformer(ROOT::RDF::RNode df,
harrypuuter marked this conversation as resolved.
Show resolved Hide resolved
const std::string &inputname,
const std::string &outputname,
const std::string &param_file,
const std::string &var_type) {
// read params from file
Logger::get("StandardTransformer")->debug("reading file {}", param_file);
std::string replace_str = std::string("EVTID");
std::string odd_file_path =
std::string(param_file)
.replace(param_file.find(replace_str), replace_str.length(),
std::string("odd"));
std::string even_file_path =
std::string(param_file)
.replace(param_file.find(replace_str), replace_str.length(),
std::string("even"));

std::ifstream odd_file(odd_file_path);
json odd_info = json::parse(odd_file);
std::ifstream even_file(even_file_path);
json even_info = json::parse(even_file);

// odd or even files mean that they are trained on odd or even events, so it
// has to be applied on the opposite
auto transform_int = [odd_info, even_info,
inputname](const unsigned long long event_id,
const int input_var) {
float shifted = -10;
if (int(event_id) % 2 == 0) {
shifted = (float(input_var) - float(odd_info[inputname]["mean"])) /
float(odd_info[inputname]["std"]);
} else if (int(event_id) % 2 == 1) {
shifted = (float(input_var) - float(even_info[inputname]["mean"])) /
float(even_info[inputname]["std"]);
}
Logger::get("StandardTransformer")
->debug("transforming var {} from {} to {}", inputname, input_var,
shifted);
return shifted;
};
auto transform_float = [odd_info, even_info,
inputname](const unsigned long long event_id,
const float input_var) {
float shifted = -10;
if (int(event_id) % 2 == 0) {
shifted = (float(input_var) - float(odd_info[inputname]["mean"])) /
float(odd_info[inputname]["std"]);
} else if (int(event_id) % 2 == 1) {
shifted = (float(input_var) - float(even_info[inputname]["mean"])) /
float(even_info[inputname]["std"]);
}
Logger::get("StandardTransformer")
->debug("transforming var {} from {} to {}", inputname, input_var,
shifted);
return shifted;
};

const std::string event_id = std::string("event");
if (var_type.rfind("i", 0) == 0) {
auto df1 = df.Define(outputname, transform_int, {event_id, inputname});
return df1;
} else if (var_type.rfind("f", 0) == 0) {
auto df1 =
df.Define(outputname, transform_float, {event_id, inputname});
return df1;
} else {
Logger::get("StandardTransformer")
->debug("transformation failed due to wrong variable type: {}",
var_type);
return df;
}
}

} // end namespace ml
#endif /* GUARD_ML_H */
Loading
Loading