-
-
Notifications
You must be signed in to change notification settings - Fork 49
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
132 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,132 @@ | ||
# quantum_clustering.py | ||
import numpy as np | ||
from qiskit import Aer | ||
from qiskit.circuit import QuantumCircuit | ||
from qiskit.algorithms import VQE | ||
from qiskit.algorithms.optimizers import SLSQP | ||
from qiskit.primitives import Sampler | ||
from qiskit.quantum_info import Statevector | ||
from sklearn.cluster import KMeans | ||
|
||
class QuantumKMeans: | ||
def __init__(self, n_clusters=2, max_iter=100, tol=1e-4): | ||
""" | ||
Initialize the Quantum K-Means algorithm. | ||
Parameters: | ||
- n_clusters: Number of clusters to form. | ||
- max_iter: Maximum number of iterations. | ||
- tol: Tolerance for convergence. | ||
""" | ||
self.n_clusters = n_clusters | ||
self.max_iter = max_iter | ||
self.tol = tol | ||
self.centroids = None | ||
|
||
def _quantum_state_preparation(self, data): | ||
""" | ||
Prepare a quantum state from the data points. | ||
Parameters: | ||
- data: Input data points. | ||
Returns: | ||
- QuantumCircuit: The quantum circuit for state preparation. | ||
""" | ||
num_qubits = int(np.ceil(np.log2(len(data)))) | ||
circuit = QuantumCircuit(num_qubits) | ||
|
||
# Normalize data to prepare quantum states | ||
normalized_data = data / np.linalg.norm(data) | ||
for i, amplitude in enumerate(normalized_data): | ||
circuit.initialize(amplitude, i) | ||
|
||
return circuit | ||
|
||
def _quantum_distance_measurement(self, state1, state2): | ||
""" | ||
Measure the distance between two quantum states. | ||
Parameters: | ||
- state1: First quantum state. | ||
- state2: Second quantum state. | ||
Returns: | ||
- float: The distance between the two states. | ||
""" | ||
# Use inner product to calculate distance | ||
return 1 - np.abs(np.dot(state1, state2))**2 | ||
|
||
def fit(self, data): | ||
""" | ||
Fit the Quantum K-Means algorithm to the data. | ||
Parameters: | ||
- data: Input data points (numpy array). | ||
""" | ||
# Initialize centroids randomly | ||
random_indices = np.random.choice(len(data), self.n_clusters, replace=False) | ||
self.centroids = data[random_indices] | ||
|
||
for iteration in range(self.max_iter): | ||
# Prepare quantum states for centroids | ||
centroid_states = [self._quantum_state_preparation(centroid) for centroid in self.centroids] | ||
|
||
# Assign clusters based on distance measurement | ||
labels = [] | ||
for point in data: | ||
point_state = self._quantum_state_preparation(point) | ||
distances = [self._quantum_distance_measurement(point_state, centroid_state) for centroid_state in centroid_states] | ||
labels.append(np.argmin(distances)) | ||
|
||
# Update centroids | ||
new_centroids = np.array([data[np.array(labels) == i].mean(axis=0) for i in range(self.n_clusters)]) | ||
|
||
# Check for convergence | ||
if np.all(np.abs(new_centroids - self.centroids) < self.tol): | ||
break | ||
|
||
self.centroids = new_centroids | ||
|
||
def predict(self, data): | ||
""" | ||
Predict the closest cluster for each data point. | ||
Parameters: | ||
- data: Input data points (numpy array). | ||
Returns: | ||
- labels: Cluster labels for each data point. | ||
""" | ||
labels = [] | ||
centroid_states = [self._quantum_state_preparation(centroid) for centroid in self.centroids] | ||
|
||
for point in data: | ||
point_state = self._quantum_state_preparation(point) | ||
distances = [self._quantum_distance_measurement(point_state, centroid_state) for centroid_state in centroid_states] | ||
labels.append(np.argmin(distances)) | ||
|
||
return np.array(labels) | ||
|
||
if __name__ == "__main__": | ||
# Example usage | ||
from sklearn.datasets import make_blobs | ||
import matplotlib.pyplot as plt | ||
|
||
# Generate synthetic data | ||
X, _ = make_blobs(n_samples=100, centers=3, cluster_std=0.60, random_state=0) | ||
|
||
# Initialize and fit Quantum K-Means | ||
qkmeans = QuantumKMeans(n_clusters=3) | ||
qkmeans.fit(X) | ||
|
||
# Predict clusters | ||
labels = qkmeans.predict(X) | ||
|
||
# Plot results | ||
plt.scatter(X[:, 0], X[:, 1], c=labels, s=50, cmap='viridis') | ||
plt.scatter(qkmeans.centroids[:, 0], qkmeans.centroids[:, 1], c='red', s=200, alpha=0.75, marker='X') | ||
plt.title('Quantum K-Means Clustering') | ||
plt.xlabel('Feature 1') | ||
plt.ylabel('Feature 2') | ||
plt.show() |