Skip to content

Commit

Permalink
Create quantum_clustering.py
Browse files Browse the repository at this point in the history
  • Loading branch information
KOSASIH authored Jan 20, 2025
1 parent 667a183 commit 240c84d
Showing 1 changed file with 132 additions and 0 deletions.
132 changes: 132 additions & 0 deletions quantum/algorithms/quantum_clustering.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,132 @@
# quantum_clustering.py
import numpy as np
from qiskit import Aer
from qiskit.circuit import QuantumCircuit
from qiskit.algorithms import VQE
from qiskit.algorithms.optimizers import SLSQP
from qiskit.primitives import Sampler
from qiskit.quantum_info import Statevector
from sklearn.cluster import KMeans

class QuantumKMeans:
def __init__(self, n_clusters=2, max_iter=100, tol=1e-4):
"""
Initialize the Quantum K-Means algorithm.
Parameters:
- n_clusters: Number of clusters to form.
- max_iter: Maximum number of iterations.
- tol: Tolerance for convergence.
"""
self.n_clusters = n_clusters
self.max_iter = max_iter
self.tol = tol
self.centroids = None

def _quantum_state_preparation(self, data):
"""
Prepare a quantum state from the data points.
Parameters:
- data: Input data points.
Returns:
- QuantumCircuit: The quantum circuit for state preparation.
"""
num_qubits = int(np.ceil(np.log2(len(data))))
circuit = QuantumCircuit(num_qubits)

# Normalize data to prepare quantum states
normalized_data = data / np.linalg.norm(data)
for i, amplitude in enumerate(normalized_data):
circuit.initialize(amplitude, i)

return circuit

def _quantum_distance_measurement(self, state1, state2):
"""
Measure the distance between two quantum states.
Parameters:
- state1: First quantum state.
- state2: Second quantum state.
Returns:
- float: The distance between the two states.
"""
# Use inner product to calculate distance
return 1 - np.abs(np.dot(state1, state2))**2

def fit(self, data):
"""
Fit the Quantum K-Means algorithm to the data.
Parameters:
- data: Input data points (numpy array).
"""
# Initialize centroids randomly
random_indices = np.random.choice(len(data), self.n_clusters, replace=False)
self.centroids = data[random_indices]

for iteration in range(self.max_iter):
# Prepare quantum states for centroids
centroid_states = [self._quantum_state_preparation(centroid) for centroid in self.centroids]

# Assign clusters based on distance measurement
labels = []
for point in data:
point_state = self._quantum_state_preparation(point)
distances = [self._quantum_distance_measurement(point_state, centroid_state) for centroid_state in centroid_states]
labels.append(np.argmin(distances))

# Update centroids
new_centroids = np.array([data[np.array(labels) == i].mean(axis=0) for i in range(self.n_clusters)])

# Check for convergence
if np.all(np.abs(new_centroids - self.centroids) < self.tol):
break

self.centroids = new_centroids

def predict(self, data):
"""
Predict the closest cluster for each data point.
Parameters:
- data: Input data points (numpy array).
Returns:
- labels: Cluster labels for each data point.
"""
labels = []
centroid_states = [self._quantum_state_preparation(centroid) for centroid in self.centroids]

for point in data:
point_state = self._quantum_state_preparation(point)
distances = [self._quantum_distance_measurement(point_state, centroid_state) for centroid_state in centroid_states]
labels.append(np.argmin(distances))

return np.array(labels)

if __name__ == "__main__":
# Example usage
from sklearn.datasets import make_blobs
import matplotlib.pyplot as plt

# Generate synthetic data
X, _ = make_blobs(n_samples=100, centers=3, cluster_std=0.60, random_state=0)

# Initialize and fit Quantum K-Means
qkmeans = QuantumKMeans(n_clusters=3)
qkmeans.fit(X)

# Predict clusters
labels = qkmeans.predict(X)

# Plot results
plt.scatter(X[:, 0], X[:, 1], c=labels, s=50, cmap='viridis')
plt.scatter(qkmeans.centroids[:, 0], qkmeans.centroids[:, 1], c='red', s=200, alpha=0.75, marker='X')
plt.title('Quantum K-Means Clustering')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.show()

0 comments on commit 240c84d

Please sign in to comment.