Skip to content

KaliCharan-V/embedchain

 
 

Repository files navigation

embedchain

PyPI Discord Twitter Substack Open in Colab

Embedchain is a framework to easily create LLM powered bots over any dataset. If you want a javascript version, check out embedchain-js

🔧 Quick install

pip install embedchain

🔥 Latest

  • [2023/07/19] Released support for 🦙 llama2 model. Start creating your llama2 based bots like this:

    import os
    
    from embedchain import Llama2App
    
    os.environ['REPLICATE_API_TOKEN'] = "REPLICATE API TOKEN"
    
    zuck_bot = Llama2App()
    
    # Embed your data
    zuck_bot.add("youtube_video", "https://www.youtube.com/watch?v=Ff4fRgnuFgQ")
    zuck_bot.add("web_page", "https://en.wikipedia.org/wiki/Mark_Zuckerberg")
    
    # Nice, your bot is ready now. Start asking questions to your bot.
    zuck_bot.query("Who is Mark Zuckerberg?")
    # Answer: Mark Zuckerberg is an American internet entrepreneur and business magnate. He is the co-founder and CEO of Facebook.

🔍 Demo

Try out embedchain in your browser:

Open in Colab

📖 Documentation

The documentation for embedchain can be found at docs.embedchain.ai.

💻 Usage

Embedchain empowers you to create chatbot models similar to ChatGPT, using your own evolving dataset.

Queries

For example, you can use Embedchain to create an Elon Musk bot using the following code:

import os
from embedchain import App

# Create a bot instance
os.environ["OPENAI_API_KEY"] = "YOUR API KEY"
elon_bot = App()

# Embed online resources
elon_bot.add("web_page", "https://en.wikipedia.org/wiki/Elon_Musk")
elon_bot.add("web_page", "https://tesla.com/elon-musk")
elon_bot.add("youtube_video", "https://www.youtube.com/watch?v=MxZpaJK74Y4")

# Query the bot
elon_bot.query("How many companies does Elon Musk run?")
# Answer: Elon Musk runs four companies: Tesla, SpaceX, Neuralink, and The Boring Company

🤝 Contributing

Contributions are welcome! Please check out the issues on the repository, and feel free to open a pull request. For more information, please see the contributing guidelines.

Citation

If you utilize this repository, please consider citing it with:

@misc{embedchain,
  author = {Taranjeet Singh},
  title = {Embechain: Framework to easily create LLM powered bots over any dataset},
  year = {2023},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/embedchain/embedchain}},
}

About

Framework to easily create LLM powered bots over any dataset.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 92.7%
  • Jupyter Notebook 6.8%
  • Makefile 0.5%