Releases: KeplerGO/oktopus
Releases · KeplerGO/oktopus
First tentacle
oktopus
includes the following:
- parameter estimation with built-in likelihood functions (Poisson, Gaussian, Multinomial, Laplace, and Multivariate Gaussian) using Maximum Likelihood Estimators
- parameter estimation with built-in and extern posterior distributions using Maximum A Posteriori Probability Estimators
- support for computation of uncertainties using Fisher Information Matrix
- L1 norm minimization with support for regularization terms
- support local and global optimizers (wrappers around
scipy
andscikit-optimize
)
oktopus
has been applied in PSF photometry on data from NASA's Kepler and K2 missions. Check out http://pyke.keplerscience.org
See the full documentation at: https://keplergo.github.io/oktopus/index.html