Instance-Level Salient Object Segmentation
Guanbin Li, Pengxiang Yan, YuanXie, Guisheng Wang, Liang Lin, Yizhou Yu.
Computer Vision and Image Understanding (CVIU), 2021, Elsevier.
[Paper]
- Predicted saliency maps: [Google Drive] [Baidu Pan](passwd: 9v58)
- Trained model weights: [Google Drive] [Baidu Pan] (passwd: 5zs3)
- Evaluation toolbox: [sal_eval_toolbox]
This code MSNet-MXNet
is tested on Ubuntu 16.04, Python=3.7 (via Anaconda3), MXNet=1.3.1, CUDA=9.2.
# install MXNet (refer to your CUDA version)
$ pip install mxnet-cu92==1.3.1
# install others
$ pip install mxboard pyyaml tqdm opencv-python Pillow
Clone this repository with submodules:
git clone --recurse-submodules https://github.com/Kinpzz/MSRNet-CVIU.git
# Training on DUTS-TR for salient object/region detection
$ python train.py --config config/MSRNet_DUTS.yaml
Download and save model weights in MSRNet-MXNet/models
.
# Inference on DUTS-TE for salient object/region detection
# modify the config file to inference on other datasets
$ python test.py --config config/MSRNet_DUTS.yaml
- Proposed Datasets (ILSO) [Google Drive] [Baidu Pan] (passwd: 159u)
- ILSO-1K (CVPR 2017): training (1400), testing (600)
- ILSO-2K (CVIU 2021): training (700), testing (300)
- Predicted salient region/contour/instance maps: [Google Drive] [Baidu Pan] (passwd: gsqv)
- Evaluation toolbox: [salient instance segmentation] [edge detection]
Run instance_seg/demo.m
in MATLAB.
Note that the salient region maps & salient contour maps are predicted by the above-mentioned MSRNet-MXNet fine-tuned on ILSO datasets.
If you find this work helpful, please consider citing
# CVIU 2021
@article{li2021instance,
title = {Instance-level salient object segmentation},
author = {Li, Guanbin and Yan, Pengxiang and Xie, Yuan and Wang, Guisheng and Lin, Liang and Yu, Yizhou},
journal = {Computer Vision and Image Understanding},
volume = {207},
pages = {103207},
year = {2021},
issn = {1077-3142},
}
# CVPR 2017
@inproceedings{li2017instance,
title={Instance-level salient object segmentation},
author={Li, Guanbin and Xie, Yuan and Lin, Liang and Yu, Yizhou},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
pages={2386--2395},
year={2017}
}