Skip to content

code for "TranSiGen: Deep representation learning of chemical-induced transcriptional profile"

License

Notifications You must be signed in to change notification settings

Leafaeolian/TranSiGen

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

TranSiGen

code for "TranSiGen: Deep representation learning of chemical-induced transcriptional profile"

Image text
Fig. 1 TranSiGen’s architecture and application. a The data processing flow for TranSiGen. b The architecture and inference process of TranSiGen. c The applications of TranSiGen-derived representation.

Train model

python train_TranSiGen_full_data.py --data_path ../dataLINCS2020/processed_data_id.h5
                                    --molecule_path ../data/LINCS2020/idx2smi.pickle
                                    --molecule_feature KPGT
                                    --initialization_model pretrain_shRNA
                                    --split_data_type smiles_split
                                    --n_epochs 300
                                    --n_latent 100
                                    --molecule_feature_embed_dim [400]
                                    --batch_size 64
                                    --learning_rate 1e-3
                                    --beta 0.1
                                    --dropout 0.1
                                    --weight_decay 1e-5
                                    --train_flag True
                                    --eval_metric True

Infer profile

python train_TranSiGen_full_data.py --data_path ../dataLINCS2020/processed_data_id.h5
                                    --molecule_path ../data/LINCS2020/idx2smi.pickle
                                    --molecule_feature KPGT
                                    --initialization_model pretrain_shRNA
                                    --split_data_type smiles_split
                                    --n_epochs 300
                                    --n_latent 100
                                    --molecule_feature_embed_dim [400]
                                    --batch_size 64
                                    --learning_rate 1e-3
                                    --beta 0.1
                                    --dropout 0.1
                                    --weight_decay 1e-5
                                    --train_flag True
                                    --eval_metric True

Setup and dependencies

requirements.txt contains environment of this project.

Requirements

python = 3.6.13
pytorch = 1.5.1
cmappy = 4.0.1
scikit-learn = 0.24.2
numpy = 1.19.5
rdkit = 2020.09.1

About

code for "TranSiGen: Deep representation learning of chemical-induced transcriptional profile"

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 77.7%
  • Python 22.3%