Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 13 additions & 0 deletions intern-basics/House_price_Prediction/Readme.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,13 @@
# House Price Prediction

In this project, we used some algorithm to predict the house price for boston housing datasets. Main goal is to compare various algorithms and evaluate models by comparing prediction accuracy. We examined different models - Linear Regression, Lasso Regression and RidgeRegression based on the accuracy (MSE) .

# Algorithms Used

<li>Linear Regression</li>
<li>Ridge Regression</li>
<li>Lasso Regression</li>


# conclusion
We have compared algorithms by MSE. We found that Lasso model gave lowest MSE.
140 changes: 140 additions & 0 deletions intern-basics/House_price_Prediction/boston_house.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,140 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(506,)"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from sklearn.datasets import load_boston\n",
"import numpy as np\n",
"\n",
"X, Y = load_boston(return_X_y=True)\n",
"Y.shape"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"37.89377859960245\n",
"[-1.91246374e-01 4.42289967e-02 5.52207977e-02 1.71631351e+00\n",
" -1.49957220e+01 4.88773025e+00 2.60921031e-03 -1.29480799e+00\n",
" 4.84787214e-01 -1.54006673e-02 -8.08795026e-01 -1.29230427e-03\n",
" -5.17953791e-01] 28.67259959085611\n"
]
}
],
"source": [
"###Linear Regression\n",
"from sklearn import linear_model\n",
"from sklearn.metrics import mean_squared_error\n",
"x_train, x_test = (X[:400], X[400:])\n",
"y_train, y_test = (Y[:400], Y[400:])\n",
"\n",
"reg = linear_model.LinearRegression()\n",
"reg.fit(x_train, y_train)\n",
"\n",
"y_pred = reg.predict(x_test)\n",
"print(mean_squared_error(y_pred, y_test))\n",
"print(reg.coef_, reg.intercept_)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"35.364216909603954\n",
"[-1.87190620e-01 4.55998256e-02 2.36903825e-02 1.64050920e+00\n",
" -7.90352445e+00 4.90320713e+00 -2.77137677e-03 -1.20245094e+00\n",
" 4.68016759e-01 -1.63967738e-02 -7.32829766e-01 1.03596933e-03\n",
" -5.28859060e-01]\n",
"23.378443298143104\n"
]
}
],
"source": [
"##Ridge Regression\n",
"ridge = linear_model.Ridge()\n",
"ridge.fit(x_train, y_train)\n",
"\n",
"y_pred_ridge = ridge.predict(x_test)\n",
"print(mean_squared_error(y_pred_ridge, y_test))\n",
"\n",
"print(ridge.coef_)\n",
"print(ridge.intercept_)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"21.668677158204268\n",
"[-0.06672593 0.04867329 -0. 0. -0. 1.8287023\n",
" 0.02662454 -0.73154672 0.36464622 -0.01739047 -0.6456581 0.00861184\n",
" -0.78298032]\n",
"34.36296528131457\n"
]
}
],
"source": [
"##Lasso Regression \n",
"lasso = linear_model.Lasso()\n",
"lasso.fit(x_train, y_train)\n",
"\n",
"y_pred_lasso = lasso.predict(x_test)\n",
"print(mean_squared_error(y_pred_lasso, y_test))\n",
"\n",
"print(lasso.coef_)\n",
"print(lasso.intercept_)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.5"
}
},
"nbformat": 4,
"nbformat_minor": 4
}