-
Notifications
You must be signed in to change notification settings - Fork 6
/
se3_estimation_malloc.cc
288 lines (229 loc) · 9.49 KB
/
se3_estimation_malloc.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
// Author: [email protected] (Keir Mierle)
//
// Tutorial Author: [email protected] (임형태)
#include "ceres/ceres.h"
#include "glog/logging.h"
#include <vector>
#include <random>
#include <iomanip>
using ceres::AutoDiffCostFunction;
using ceres::CostFunction;
using ceres::Problem;
using ceres::Solver;
using ceres::Solve;
Eigen::Matrix3d getRz(const double rad) {
Eigen::Matrix3d rot = Eigen::Matrix3d::Identity();
rot(0, 0) = static_cast<double>(cos(rad));
rot(0, 1) = static_cast<double>(-sin(rad));
rot(1, 0) = static_cast<double>(sin(rad));
rot(1, 1) = static_cast<double>(cos(rad));
return rot;
}
Eigen::Matrix3d getRy(const double rad) {
Eigen::Matrix3d rot = Eigen::Matrix3d::Identity();
rot(0, 0) = static_cast<double>(cos(rad));
rot(0, 2) = static_cast<double>(sin(rad));
rot(2, 0) = static_cast<double>(-sin(rad));
rot(2, 2) = static_cast<double>(cos(rad));
return rot;
}
Eigen::Matrix3d getRx(const double rad) {
Eigen::Matrix3d rot = Eigen::Matrix3d::Identity();
rot(1, 1) = static_cast<double>(cos(rad));
rot(1, 2) = static_cast<double>(-sin(rad));
rot(2, 1) = static_cast<double>(sin(rad));
rot(2, 2) = static_cast<double>(cos(rad));
return rot;
}
Eigen::Matrix3d vec2skew_symm(const Eigen::Vector3d &u) {
Eigen::Matrix3d skew_symm = Eigen::Matrix3d::Zero();
skew_symm(0, 1) = -u(2);
skew_symm(1, 0) = u(2);
skew_symm(0, 2) = u(1);
skew_symm(2, 0) = -u(1);
skew_symm(1, 2) = -u(0);
skew_symm(2, 1) = u(0);
return skew_symm;
}
Eigen::Matrix3d vec2SO3(double*rot_vec) {
double mag = 0;
mag += pow(rot_vec[0], 2);
mag += pow(rot_vec[1], 2);
mag += pow(rot_vec[2], 2);
mag = sqrt(mag);
Eigen::Vector3d u(rot_vec[0] / mag, rot_vec[1] / mag, rot_vec[2] / mag);
Eigen::Matrix3d R = Eigen::Matrix3d::Identity();
Eigen::Matrix3d w_x = vec2skew_symm(u);
R += sin(mag) * w_x + (1 - cos(mag)) * w_x * w_x;
return R;
}
Eigen::Matrix4d est2SE3(double*rot_vec, double*ts) {
Eigen::Matrix3d R = vec2SO3(rot_vec);
Eigen::Matrix4d T = Eigen::Matrix4d::Identity();
T.block<3, 3>(0, 0) = R;
T(0, 3) = ts[0];
T(1, 3) = ts[1];
T(2, 3) = ts[2];
return T;
}
double calcTranslationError(Eigen::Matrix4d &rel4x4) {
double ts_error = 0;
for (int i = 0; i < 3; ++i) {
ts_error += rel4x4(i, 3) * rel4x4(i, 3);
}
ts_error = sqrt(ts_error);
return ts_error;
}
// http://www.boris-belousov.net/2016/12/01/quat-dist/
double calcRotationError(Eigen::Matrix4d &rel4x4) {
Eigen::Matrix3d rel_rot = rel4x4.block<3, 3>(0, 0);
double rot_error = acos((rel_rot.trace() - 1) / 2);
return rot_error;
}
struct SE3Residual {
SE3Residual(
Eigen::Vector3d src,
Eigen::Vector3d tgt) : src_(src), tgt_(tgt) {}
template<typename T>
bool operator()(const T*const rot_est, const T*const ts_est, T*residual) const {
// residual[0] = sqrt(pow(tgt_(0) - (src_(0) - rot_est[2] * src_(1) + rot_est[1] * src_(2) + ts_est[0]), 2)
// + pow(tgt_(1) - (rot_est[2] * src_(0) + src_(1) - rot_est[0] * src_(2) + ts_est[1]), 2)
// + pow(tgt_(2) - (rot_est[1] * src_(0) + rot_est[0] * src_(1) + src_(2) + ts_est[2]), 2));
residual[0] = tgt_(0) - (src_(0) - rot_est[2] * src_(1) + rot_est[1] * src_(2) + ts_est[0]);
residual[1] = tgt_(1) - (rot_est[2] * src_(0) + src_(1) - rot_est[0] * src_(2) + ts_est[1]);
residual[2] = tgt_(2) - (-rot_est[1] * src_(0) + rot_est[0] * src_(1) + src_(2) + ts_est[2]);
return true;
}
private:
const Eigen::Vector3d src_;
const Eigen::Vector3d tgt_;
};
struct SE3ResidualYH {
SE3ResidualYH(const Eigen::Vector3d &src, const Eigen::Vector3d &tgt) {
src_x = src[0];
src_y = src[1];
src_z = src[2];
tgt_x = tgt[0];
tgt_y = tgt[1];
tgt_z = tgt[2];
}
template<typename T>
bool operator()(const T*const quat_est, const T*const ts_est, T* residual) const {
Eigen::Map<const Eigen::Quaternion<T>> quat(quat_est);
Eigen::Matrix<T, 3, 3> rot = quat.toRotationMatrix();
residual[0] = tgt_x - rot(0,0) * src_x - rot(0,1) * src_y - rot(0,2) * src_z - ts_est[0];
residual[1] = tgt_y - rot(1,0) * src_x - rot(1,1) * src_y - rot(1,2) * src_z - ts_est[1];
residual[2] = tgt_z - rot(2,0) * src_x - rot(2,1) * src_y - rot(2,2) * src_z - ts_est[2];
return true;
}
private:
double src_x;
double src_y;
double src_z;
double tgt_x;
double tgt_y;
double tgt_z;
};
using namespace std;
int main(int argc, char**argv) {
google::InitGoogleLogging(argv[0]);
double lower_bound = -20.0;
double upper_bound = 20.0;
std::random_device rd; //Will be used to obtain a seed for the random number engine
std::mt19937 gen(rd());
std::uniform_real_distribution<double> unif(lower_bound, upper_bound);
std::default_random_engine re;
/*
* Generate dummy source point cloud
*/
Eigen::Matrix<double, 4, Eigen::Dynamic> src_h;
int num_pts = 100;
src_h.resize(4, num_pts);
for (int i = 0; i < num_pts; ++i) {
for (int j = 0; j < 3; ++j) {
double random_value = unif(re);
cout << random_value << endl;
cout << i << " " << j << endl;
src_h(j, i) = random_value;
}
src_h(3, i) = 1;
}
double upper_small_angle_bound = 10.0;
double upper_translation_bound = 5.0;
int num_repeat = 20;
for (int l = 0; l < num_repeat; ++l) {
// Setting GT transformation
std::uniform_real_distribution<double> unif_rot(-upper_small_angle_bound, upper_small_angle_bound);
std::uniform_real_distribution<double> unif_ts(-upper_translation_bound, upper_translation_bound);
/*
* Generate Dummy SE(3)
*/
const double yaw_gt = unif_rot(re) * M_PI / 180; // radian
const double pitch_gt = unif_rot(re) * M_PI / 180; // radian
const double roll_gt = unif_rot(re) * M_PI / 180; // radian
const double x_gt = unif_ts(re);
const double y_gt = unif_ts(re);
const double z_gt = unif_ts(re);
Eigen::Matrix3d rot_gt;
Eigen::Matrix3d Rz = getRz(yaw_gt);
Eigen::Matrix3d Ry = getRy(pitch_gt);
Eigen::Matrix3d Rx = getRx(roll_gt);
rot_gt = Rz * Ry * Rx;
Eigen::Matrix4d T_gt = Eigen::Matrix4d::Identity();
T_gt.block<3, 3>(0, 0) = rot_gt;
T_gt(0, 3) = x_gt;
T_gt(1, 3) = y_gt;
T_gt(2, 3) = z_gt;
Eigen::Matrix<double, 4, Eigen::Dynamic> tgt_h = T_gt * src_h;
// Homogeneous -> 3 x N
Eigen::Matrix<double, 3, Eigen::Dynamic> src = src_h.topRows(3);
Eigen::Matrix<double, 3, Eigen::Dynamic> tgt = tgt_h.topRows(3);
cout << l << "-th trial" << endl;
Problem problem;
// double*rot_est = (double*) malloc(3 * sizeof(double));
// rot_est[0] = 0.0;
// rot_est[1] = 0.0;
// rot_est[2] = 0.0;
//
// double*ts_est = (double*) malloc(3 * sizeof(double));
// ts_est[0] = 0.0;
// ts_est[1] = 0.0;
// ts_est[2] = 0.0;
Eigen::Quaterniond quat_gt = Eigen::Quaterniond(T_gt.block<3,3>(0, 0));
Eigen::Vector3d pos_gt = T_gt.block<3,1>(0,3);
Eigen::Vector3d pos(0.0, 0.0, 0.0);
Eigen::Quaterniond quat = quat_gt.inverse();
ceres::EigenQuaternionParameterization *quat_param = new ceres::EigenQuaternionParameterization();
// problem.AddParameterBlock(pos.data(), 3);
// problem.AddParameterBlock(quat.coeffs().data(), 4, quat_param);
for (int i = 0; i < num_pts; ++i) {
// CostFunction*cost_function =
// new AutoDiffCostFunction<SE3Residual, 3, 3, 3>(new SE3Residual(src.col(i), tgt.col(i)));
// problem.AddResidualBlock(cost_function, nullptr, rot_est, ts_est);
CostFunction*cost_function =
new AutoDiffCostFunction<SE3ResidualYH, 3, 4, 3>(new SE3ResidualYH(src.col(i), tgt.col(i)));
problem.AddResidualBlock(cost_function, nullptr, quat.coeffs().data(), pos.data());
}
// Run the solver!
Solver::Options options;
options.minimizer_progress_to_stdout = false;
Solver::Summary summary;
Eigen::Quaterniond quat_pre = quat;
Eigen::Vector3d pos_pre = pos;
Solve(options, &problem, &summary);
std::cout << summary.FullReport() << "\n";
std::cout << std::fixed << std::setprecision(8);
std::cout << quat_gt.coeffs().transpose() << " | " << pos_gt.transpose() << std::endl;
std::cout << quat_pre.coeffs().transpose() << " | " << pos_pre.transpose() << std::endl;
std::cout << quat.coeffs().transpose() << " | " << pos.transpose() << std::endl;
// Eigen::Matrix4d T_est = est2SE3(rot_est, ts_est);
// Eigen::Matrix4d T_rel = T_est * T_gt.inverse();
//
// free(rot_est);
// free(ts_est);
//
// cout << "\033[1;32m ABS. size:"<< calcTranslationError(T_gt) << "m / " << calcRotationError(T_gt) * 180.0 / M_PI << "deg -> ";
// cout << "Rel error: " << calcTranslationError(T_rel) << "m / " << calcRotationError(T_rel) * 180.0 / M_PI << "deg\033[0m" << endl;
}
return 0;
}