Skip to content

Commit

Permalink
Converting http to https (3)... (scikit-learn#12302)
Browse files Browse the repository at this point in the history
  • Loading branch information
TakingItCasual authored and ogrisel committed Oct 5, 2018
1 parent b020f62 commit f4e7d2b
Show file tree
Hide file tree
Showing 61 changed files with 112 additions and 112 deletions.
4 changes: 2 additions & 2 deletions benchmarks/bench_covertype.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,10 +34,10 @@
S. Shalev-Shwartz, Y. Singer, N. Srebro - In Proceedings of ICML '07.
* `"Training Linear SVMs in Linear Time"
<www.cs.cornell.edu/People/tj/publications/joachims_06a.pdf>`_
<https://www.cs.cornell.edu/people/tj/publications/joachims_06a.pdf>`_
T. Joachims - In SIGKDD '06
[1] http://archive.ics.uci.edu/ml/datasets/Covertype
[1] https://archive.ics.uci.edu/ml/datasets/Covertype
"""
from __future__ import division, print_function
Expand Down
8 changes: 4 additions & 4 deletions doc/about.rst
Original file line number Diff line number Diff line change
Expand Up @@ -99,14 +99,14 @@ full-time. It also hosts coding sprints and other events.
:align: center
:target: https://www.inria.fr

`Paris-Saclay Center for Data Science <http://www.datascience-paris-saclay.fr>`_
`Paris-Saclay Center for Data Science <https://www.datascience-paris-saclay.fr/>`_
funded one year for a developer to work on the project full-time
(2014-2015) and 50% of the time of Guillaume Lemaitre (2016-2017).

.. image:: images/cds-logo.png
:width: 200pt
:align: center
:target: http://www.datascience-paris-saclay.fr
:target: https://www.datascience-paris-saclay.fr/

`NYU Moore-Sloan Data Science Environment <https://cds.nyu.edu/mooresloan/>`_
funded Andreas Mueller (2014-2016) to work on this project. The Moore-Sloan Data Science
Expand All @@ -118,14 +118,14 @@ Environment also funds several students to work on the project part-time.
:target: https://cds.nyu.edu/mooresloan/


`Télécom Paristech <http://www.telecom-paristech.com>`_ funded Manoj Kumar (2014),
`Télécom Paristech <https://www.telecom-paristech.fr/>`_ funded Manoj Kumar (2014),
Tom Dupré la Tour (2015), Raghav RV (2015-2017), Thierry Guillemot (2016-2017)
and Albert Thomas (2017) to work on scikit-learn.

.. image:: themes/scikit-learn/static/img/telecom.png
:width: 100pt
:align: center
:target: http://www.telecom-paristech.fr/
:target: https://www.telecom-paristech.fr/


`Columbia University <https://columbia.edu/>`_ funds Andreas Müller since 2016.
Expand Down
2 changes: 1 addition & 1 deletion doc/glossary.rst
Original file line number Diff line number Diff line change
Expand Up @@ -170,7 +170,7 @@ General Concepts
:class:`~sklearn.preprocessing.OneHotEncoder` can be used to
one-hot encode categorical features.
See also :ref:`preprocessing_categorical_features` and the
`http://contrib.scikit-learn.org/categorical-encoding
`https://contrib.scikit-learn.org/categorical-encoding/
<category_encoders>`_ package for tools related to encoding
categorical features.

Expand Down
10 changes: 5 additions & 5 deletions doc/modules/clustering.rst
Original file line number Diff line number Diff line change
Expand Up @@ -286,7 +286,7 @@ small, as shown in the example and cited reference.
.. topic:: References:

* `"Web Scale K-Means clustering"
<http://www.eecs.tufts.edu/~dsculley/papers/fastkmeans.pdf>`_
<https://www.eecs.tufts.edu/~dsculley/papers/fastkmeans.pdf>`_
D. Sculley, *Proceedings of the 19th international conference on World
wide web* (2010)

Expand Down Expand Up @@ -445,7 +445,7 @@ works well for a small number of clusters but is not advised when using
many clusters.

For two clusters, it solves a convex relaxation of the `normalised
cuts <http://people.eecs.berkeley.edu/~malik/papers/SM-ncut.pdf>`_ problem on
cuts <https://people.eecs.berkeley.edu/~malik/papers/SM-ncut.pdf>`_ problem on
the similarity graph: cutting the graph in two so that the weight of the
edges cut is small compared to the weights of the edges inside each
cluster. This criteria is especially interesting when working on images:
Expand Down Expand Up @@ -1008,7 +1008,7 @@ the user is advised

* Tian Zhang, Raghu Ramakrishnan, Maron Livny
BIRCH: An efficient data clustering method for large databases.
http://www.cs.sfu.ca/CourseCentral/459/han/papers/zhang96.pdf
https://www.cs.sfu.ca/CourseCentral/459/han/papers/zhang96.pdf

* Roberto Perdisci
JBirch - Java implementation of BIRCH clustering algorithm
Expand Down Expand Up @@ -1144,7 +1144,7 @@ random labelings by defining the adjusted Rand index as follows:
.. topic:: References

* `Comparing Partitions
<http://link.springer.com/article/10.1007%2FBF01908075>`_
<https://link.springer.com/article/10.1007%2FBF01908075>`_
L. Hubert and P. Arabie, Journal of Classification 1985

* `Wikipedia entry for the adjusted Rand index
Expand Down Expand Up @@ -1483,7 +1483,7 @@ mean of homogeneity and completeness**:
.. topic:: References

* `V-Measure: A conditional entropy-based external cluster evaluation
measure <http://aclweb.org/anthology/D/D07/D07-1043.pdf>`_
measure <https://aclweb.org/anthology/D/D07/D07-1043.pdf>`_
Andrew Rosenberg and Julia Hirschberg, 2007

.. [B2011] `Identication and Characterization of Events in Social Media
Expand Down
4 changes: 2 additions & 2 deletions doc/modules/compose.rst
Original file line number Diff line number Diff line change
Expand Up @@ -380,7 +380,7 @@ ColumnTransformer for heterogeneous data
Many datasets contain features of different types, say text, floats, and dates,
where each type of feature requires separate preprocessing or feature
extraction steps. Often it is easiest to preprocess data before applying
scikit-learn methods, for example using `pandas <http://pandas.pydata.org/>`__.
scikit-learn methods, for example using `pandas <https://pandas.pydata.org/>`__.
Processing your data before passing it to scikit-learn might be problematic for
one of the following reasons:

Expand All @@ -395,7 +395,7 @@ transformations for different columns of the data, within a
:class:`~sklearn.pipeline.Pipeline` that is safe from data leakage and that can
be parametrized. :class:`~sklearn.compose.ColumnTransformer` works on
arrays, sparse matrices, and
`pandas DataFrames <http://pandas.pydata.org/pandas-docs/stable/>`__.
`pandas DataFrames <https://pandas.pydata.org/pandas-docs/stable/>`__.

To each column, a different transformation can be applied, such as
preprocessing or a specific feature extraction method::
Expand Down
2 changes: 1 addition & 1 deletion doc/modules/covariance.rst
Original file line number Diff line number Diff line change
Expand Up @@ -264,7 +264,7 @@ paper. It is the same algorithm as in the R ``glasso`` package.
.. topic:: References:

* Friedman et al, `"Sparse inverse covariance estimation with the
graphical lasso" <http://biostatistics.oxfordjournals.org/content/9/3/432.short>`_,
graphical lasso" <https://biostatistics.oxfordjournals.org/content/9/3/432.short>`_,
Biostatistics 9, pp 432, 2008

.. _robust_covariance:
Expand Down
2 changes: 1 addition & 1 deletion doc/modules/cross_validation.rst
Original file line number Diff line number Diff line change
Expand Up @@ -422,7 +422,7 @@ fold cross validation should be preferred to LOO.
* R. Bharat Rao, G. Fung, R. Rosales, `On the Dangers of Cross-Validation. An Experimental Evaluation
<https://people.csail.mit.edu/romer/papers/CrossVal_SDM08.pdf>`_, SIAM 2008;
* G. James, D. Witten, T. Hastie, R Tibshirani, `An Introduction to
Statistical Learning <http://www-bcf.usc.edu/~gareth/ISL>`_, Springer 2013.
Statistical Learning <https://www-bcf.usc.edu/~gareth/ISL/>`_, Springer 2013.


Leave P Out (LPO)
Expand Down
10 changes: 5 additions & 5 deletions doc/modules/decomposition.rst
Original file line number Diff line number Diff line change
Expand Up @@ -270,10 +270,10 @@ factorization, while larger values shrink many coefficients to zero.
.. topic:: References:

.. [Mrl09] `"Online Dictionary Learning for Sparse Coding"
<http://www.di.ens.fr/sierra/pdfs/icml09.pdf>`_
<https://www.di.ens.fr/sierra/pdfs/icml09.pdf>`_
J. Mairal, F. Bach, J. Ponce, G. Sapiro, 2009
.. [Jen09] `"Structured Sparse Principal Component Analysis"
<www.di.ens.fr/~fbach/sspca_AISTATS2010.pdf>`_
<https://www.di.ens.fr/~fbach/sspca_AISTATS2010.pdf>`_
R. Jenatton, G. Obozinski, F. Bach, 2009
Expand All @@ -289,7 +289,7 @@ where :math:`k` is a user-specified parameter.
When truncated SVD is applied to term-document matrices
(as returned by ``CountVectorizer`` or ``TfidfVectorizer``),
this transformation is known as
`latent semantic analysis <http://nlp.stanford.edu/IR-book/pdf/18lsi.pdf>`_
`latent semantic analysis <https://nlp.stanford.edu/IR-book/pdf/18lsi.pdf>`_
(LSA), because it transforms such matrices
to a "semantic" space of low dimensionality.
In particular, LSA is known to combat the effects of synonymy and polysemy
Expand Down Expand Up @@ -354,7 +354,7 @@ compensating for LSA's erroneous assumptions about textual data.
* Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze (2008),
*Introduction to Information Retrieval*, Cambridge University Press,
chapter 18: `Matrix decompositions & latent semantic indexing
<http://nlp.stanford.edu/IR-book/pdf/18lsi.pdf>`_
<https://nlp.stanford.edu/IR-book/pdf/18lsi.pdf>`_


.. _DictionaryLearning:
Expand Down Expand Up @@ -495,7 +495,7 @@ extracted from part of the image of a raccoon face looks like.
.. topic:: References:

* `"Online dictionary learning for sparse coding"
<http://www.di.ens.fr/sierra/pdfs/icml09.pdf>`_
<https://www.di.ens.fr/sierra/pdfs/icml09.pdf>`_
J. Mairal, F. Bach, J. Ponce, G. Sapiro, 2009

.. _MiniBatchDictionaryLearning:
Expand Down
8 changes: 4 additions & 4 deletions doc/modules/feature_extraction.rst
Original file line number Diff line number Diff line change
Expand Up @@ -207,7 +207,7 @@ otherwise the features will not be mapped evenly to the columns.

* Kilian Weinberger, Anirban Dasgupta, John Langford, Alex Smola and
Josh Attenberg (2009). `Feature hashing for large scale multitask learning
<http://alex.smola.org/papers/2009/Weinbergeretal09.pdf>`_. Proc. ICML.
<https://alex.smola.org/papers/2009/Weinbergeretal09.pdf>`_. Proc. ICML.

* `MurmurHash3 <https://github.com/aappleby/smhasher>`_.

Expand Down Expand Up @@ -409,7 +409,7 @@ identify and warn about some kinds of inconsistencies.

.. [NQY18] J. Nothman, H. Qin and R. Yurchak (2018).
`"Stop Word Lists in Free Open-source Software Packages"
<http://aclweb.org/anthology/W18-2502>`__.
<https://aclweb.org/anthology/W18-2502>`__.
In *Proc. Workshop for NLP Open Source Software*.
.. _tfidf:
Expand Down Expand Up @@ -673,7 +673,7 @@ The output is not shown here.

For an introduction to Unicode and character encodings in general,
see Joel Spolsky's `Absolute Minimum Every Software Developer Must Know
About Unicode <http://www.joelonsoftware.com/articles/Unicode.html>`_.
About Unicode <https://www.joelonsoftware.com/articles/Unicode.html>`_.

.. _`ftfy`: https://github.com/LuminosoInsight/python-ftfy

Expand Down Expand Up @@ -932,7 +932,7 @@ Some tips and tricks:
scikit-learn codebase, but can be added by customizing either the
tokenizer or the analyzer.
Here's a ``CountVectorizer`` with a tokenizer and lemmatizer using
`NLTK <http://www.nltk.org>`_::
`NLTK <https://www.nltk.org/>`_::

>>> from nltk import word_tokenize # doctest: +SKIP
>>> from nltk.stem import WordNetLemmatizer # doctest: +SKIP
Expand Down
2 changes: 1 addition & 1 deletion doc/modules/kernel_approximation.rst
Original file line number Diff line number Diff line change
Expand Up @@ -194,7 +194,7 @@ or store training examples.
.. topic:: References:

.. [RR2007] `"Random features for large-scale kernel machines"
<http://www.robots.ox.ac.uk/~vgg/rg/papers/randomfeatures.pdf>`_
<https://www.robots.ox.ac.uk/~vgg/rg/papers/randomfeatures.pdf>`_
Rahimi, A. and Recht, B. - Advances in neural information processing 2007,
.. [LS2010] `"Random Fourier approximations for skewed multiplicative histogram kernels"
<http://www.maths.lth.se/matematiklth/personal/sminchis/papers/lis_dagm10.pdf>`_
Expand Down
6 changes: 3 additions & 3 deletions doc/modules/linear_model.rst
Original file line number Diff line number Diff line change
Expand Up @@ -508,7 +508,7 @@ column is always zero.
.. topic:: References:

* Original Algorithm is detailed in the paper `Least Angle Regression
<http://www-stat.stanford.edu/~hastie/Papers/LARS/LeastAngle_2002.pdf>`_
<https://www-stat.stanford.edu/~hastie/Papers/LARS/LeastAngle_2002.pdf>`_
by Hastie et al.


Expand Down Expand Up @@ -547,7 +547,7 @@ previously chosen dictionary elements.

.. topic:: References:

* http://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf
* https://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf

* `Matching pursuits with time-frequency dictionaries
<http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf>`_,
Expand Down Expand Up @@ -710,7 +710,7 @@ ARD is also known in the literature as *Sparse Bayesian Learning* and

.. [1] Christopher M. Bishop: Pattern Recognition and Machine Learning, Chapter 7.2.1
.. [2] David Wipf and Srikantan Nagarajan: `A new view of automatic relevance determination <http://papers.nips.cc/paper/3372-a-new-view-of-automatic-relevance-determination.pdf>`_
.. [2] David Wipf and Srikantan Nagarajan: `A new view of automatic relevance determination <https://papers.nips.cc/paper/3372-a-new-view-of-automatic-relevance-determination.pdf>`_
.. [3] Michael E. Tipping: `Sparse Bayesian Learning and the Relevance Vector Machine <http://www.jmlr.org/papers/volume1/tipping01a/tipping01a.pdf>`_
Expand Down
10 changes: 5 additions & 5 deletions doc/modules/manifold.rst
Original file line number Diff line number Diff line change
Expand Up @@ -343,7 +343,7 @@ The overall complexity of spectral embedding is

* `"Laplacian Eigenmaps for Dimensionality Reduction
and Data Representation"
<http://web.cse.ohio-state.edu/~mbelkin/papers/LEM_NC_03.pdf>`_
<https://web.cse.ohio-state.edu/~mbelkin/papers/LEM_NC_03.pdf>`_
M. Belkin, P. Niyogi, Neural Computation, June 2003; 15 (6):1373-1396


Expand Down Expand Up @@ -461,15 +461,15 @@ order to avoid that, the disparities :math:`\hat{d}_{ij}` are normalized.
.. topic:: References:

* `"Modern Multidimensional Scaling - Theory and Applications"
<http://www.springer.com/fr/book/9780387251509>`_
<https://www.springer.com/fr/book/9780387251509>`_
Borg, I.; Groenen P. Springer Series in Statistics (1997)

* `"Nonmetric multidimensional scaling: a numerical method"
<http://link.springer.com/article/10.1007%2FBF02289694>`_
<https://link.springer.com/article/10.1007%2FBF02289694>`_
Kruskal, J. Psychometrika, 29 (1964)

* `"Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis"
<http://link.springer.com/article/10.1007%2FBF02289565>`_
<https://link.springer.com/article/10.1007%2FBF02289565>`_
Kruskal, J. Psychometrika, 29, (1964)

.. _t_sne:
Expand Down Expand Up @@ -561,7 +561,7 @@ is a tradeoff between performance and accuracy. Larger angles imply that we
can approximate larger regions by a single point, leading to better speed
but less accurate results.

`"How to Use t-SNE Effectively" <http://distill.pub/2016/misread-tsne/>`_
`"How to Use t-SNE Effectively" <https://distill.pub/2016/misread-tsne/>`_
provides a good discussion of the effects of the various parameters, as well
as interactive plots to explore the effects of different parameters.

Expand Down
4 changes: 2 additions & 2 deletions doc/modules/metrics.rst
Original file line number Diff line number Diff line change
Expand Up @@ -63,7 +63,7 @@ is equivalent to :func:`linear_kernel`, only slower.)

* C.D. Manning, P. Raghavan and H. Schütze (2008). Introduction to
Information Retrieval. Cambridge University Press.
http://nlp.stanford.edu/IR-book/html/htmledition/the-vector-space-model-for-scoring-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/the-vector-space-model-for-scoring-1.html

.. _linear_kernel:

Expand Down Expand Up @@ -149,7 +149,7 @@ Manhattan distance between the input vectors.

It has proven useful in ML applied to noiseless data.
See e.g. `Machine learning for quantum mechanics in a nutshell
<http://onlinelibrary.wiley.com/doi/10.1002/qua.24954/abstract/>`_.
<https://onlinelibrary.wiley.com/doi/10.1002/qua.24954/abstract/>`_.

.. _chi2_kernel:

Expand Down
4 changes: 2 additions & 2 deletions doc/modules/model_evaluation.rst
Original file line number Diff line number Diff line change
Expand Up @@ -775,7 +775,7 @@ binary classification and multilabel indicator format.
.. topic:: References:

.. [Manning2008] C.D. Manning, P. Raghavan, H. Schütze, `Introduction to Information Retrieval
<http://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-ranked-retrieval-results-1.html>`_,
<https://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-ranked-retrieval-results-1.html>`_,
2008.
.. [Everingham2010] M. Everingham, L. Van Gool, C.K.I. Williams, J. Winn, A. Zisserman,
`The Pascal Visual Object Classes (VOC) Challenge
Expand All @@ -785,7 +785,7 @@ binary classification and multilabel indicator format.
<http://www.machinelearning.org/proceedings/icml2006/030_The_Relationship_Bet.pdf>`_,
ICML 2006.
.. [Flach2015] P.A. Flach, M. Kull, `Precision-Recall-Gain Curves: PR Analysis Done Right
<http://papers.nips.cc/paper/5867-precision-recall-gain-curves-pr-analysis-done-right.pdf>`_,
<https://papers.nips.cc/paper/5867-precision-recall-gain-curves-pr-analysis-done-right.pdf>`_,
NIPS 2015.
Expand Down
2 changes: 1 addition & 1 deletion doc/modules/model_persistence.rst
Original file line number Diff line number Diff line change
Expand Up @@ -87,4 +87,4 @@ another architecture is not supported.

If you want to know more about these issues and explore other possible
serialization methods, please refer to this
`talk by Alex Gaynor <http://pyvideo.org/video/2566/pickles-are-for-delis-not-software>`_.
`talk by Alex Gaynor <https://pyvideo.org/video/2566/pickles-are-for-delis-not-software>`_.
2 changes: 1 addition & 1 deletion doc/modules/naive_bayes.rst
Original file line number Diff line number Diff line change
Expand Up @@ -72,7 +72,7 @@ it is known to be a bad estimator, so the probability outputs from
.. topic:: References:

* H. Zhang (2004). `The optimality of Naive Bayes.
<http://www.cs.unb.ca/~hzhang/publications/FLAIRS04ZhangH.pdf>`_
<https://www.cs.unb.ca/~hzhang/publications/FLAIRS04ZhangH.pdf>`_
Proc. FLAIRS.

.. _gaussian_naive_bayes:
Expand Down
2 changes: 1 addition & 1 deletion doc/modules/neighbors.rst
Original file line number Diff line number Diff line change
Expand Up @@ -307,7 +307,7 @@ keyword ``algorithm = 'kd_tree'``, and are computed using the class
.. topic:: References:

* `"Multidimensional binary search trees used for associative searching"
<http://dl.acm.org/citation.cfm?doid=361002.361007>`_,
<https://dl.acm.org/citation.cfm?doid=361002.361007>`_,
Bentley, J.L., Communications of the ACM (1975)


Expand Down
4 changes: 2 additions & 2 deletions doc/modules/neural_networks_unsupervised.rst
Original file line number Diff line number Diff line change
Expand Up @@ -152,10 +152,10 @@ explore the space more thoroughly.
.. topic:: References:

* `"A fast learning algorithm for deep belief nets"
<http://www.cs.toronto.edu/~hinton/absps/fastnc.pdf>`_
<https://www.cs.toronto.edu/~hinton/absps/fastnc.pdf>`_
G. Hinton, S. Osindero, Y.-W. Teh, 2006

* `"Training Restricted Boltzmann Machines using Approximations to
the Likelihood Gradient"
<http://www.cs.toronto.edu/~tijmen/pcd/pcd.pdf>`_
<https://www.cs.toronto.edu/~tijmen/pcd/pcd.pdf>`_
T. Tieleman, 2008
2 changes: 1 addition & 1 deletion doc/modules/outlier_detection.rst
Original file line number Diff line number Diff line change
Expand Up @@ -153,7 +153,7 @@ but regular, observation outside the frontier.
.. topic:: References:

* `Estimating the support of a high-dimensional distribution
<http://dl.acm.org/citation.cfm?id=1119749>`_ Schölkopf,
<https://dl.acm.org/citation.cfm?id=1119749>`_ Schölkopf,
Bernhard, et al. Neural computation 13.7 (2001): 1443-1471.

.. topic:: Examples:
Expand Down
2 changes: 1 addition & 1 deletion doc/modules/random_projection.rst
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@ technique for distance based method.
.. topic:: References:

* Sanjoy Dasgupta. 2000.
`Experiments with random projection. <http://cseweb.ucsd.edu/~dasgupta/papers/randomf.pdf>`_
`Experiments with random projection. <https://cseweb.ucsd.edu/~dasgupta/papers/randomf.pdf>`_
In Proceedings of the Sixteenth conference on Uncertainty in artificial
intelligence (UAI'00), Craig Boutilier and Moisés Goldszmidt (Eds.). Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 143-151.
Expand Down
4 changes: 2 additions & 2 deletions doc/modules/tree.rst
Original file line number Diff line number Diff line change
Expand Up @@ -125,8 +125,8 @@ Using the Iris dataset, we can construct a tree as follows::
>>> clf = clf.fit(iris.data, iris.target)

Once trained, we can export the tree in `Graphviz
<http://www.graphviz.org/>`_ format using the :func:`export_graphviz`
exporter. If you use the `conda <http://conda.io>`_ package manager, the graphviz binaries
<https://www.graphviz.org/>`_ format using the :func:`export_graphviz`
exporter. If you use the `conda <https://conda.io/>`_ package manager, the graphviz binaries
and the python package can be installed with

conda install python-graphviz
Expand Down
Loading

0 comments on commit f4e7d2b

Please sign in to comment.