Skip to content

Logicino/piano_transcription

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

77 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Piano transcription

Piano transcription is the task of transcribing piano recordings into MIDI files. This repo is the PyTorch implementation of our proposed high-resolution piano transcription system [1].

Demos

Here is a demo of our piano transcription system: https://www.youtube.com/watch?v=5U-WL0QvKCg

Demo and Docker image on Replicate

Environments

This codebase is developed with Python 3.7 and PyTorch 1.4.0 (Should work with other versions, but not fully tested).

Install dependencies:

pip install -r requirements.txt

Piano transcription using pretrained model

The easiest way is to transcribe a new piano recording is to install the piano_transcription_inference package: https://github.com/qiuqiangkong/piano_transcription_inference with pip as follows:

pip install piano_transcription_inference

Then, execute the following commands to transcribe this audio.

from piano_transcription_inference import PianoTranscription, sample_rate, load_audio

# Load audio
(audio, _) = load_audio('resources/cut_liszt.mp3', sr=sample_rate, mono=True)

# Transcriptor
transcriptor = PianoTranscription(device='cuda')    # 'cuda' | 'cpu'

# Transcribe and write out to MIDI file
transcribed_dict = transcriptor.transcribe(audio, 'cut_liszt.mid')

Train a piano transcription system from scratch

This section provides instructions if users would like to train a piano transcription system from scratch.

0. Prepare data

We use MAESTRO dataset V2.0.0 [1] to train the piano transcription system. MAESTRO consists of over 200 hours of virtuosic piano performances captured with fine alignment (~3 ms) between note labels and audio waveforms. MAESTRO dataset can be downloaded from https://magenta.tensorflow.org/datasets/maestro.

Statistics of MAESTRO V2.0.0 [ref]:

Split Performances Duration (hours) Size (GB) Notes (millions)
Train 967 161.3 97.7 5.73
Validation 137 19.4 11.8 0.64
Test 178 20.5 12.4 0.76
Total 1282 201.2 121.8 7.13

After downloading, the dataset looks like:

dataset_root
├── 2004
│    └── (264 files)
├── 2006
│    └── (230 files)
├── 2008
│    └── (294 files)
├── 2009
│    └── (250 files) 
├── 2011
│    └── (326 files)
├── 2013
│    └── (254 files)
├── 2014
│    └── (210 files)
├── 2015
│    └── (258 files)
├── 2017
│    └── (280 files)
├── 2018
│    └── (198 files)
├── LICENSE
├── maestro-v2.0.0.csv
├── maestro-v2.0.0.json
└── README

1. Train

Execute the commands line by line in runme.sh, including:

  1. Config dataset path and your workspace.
  2. Pack audio recordings to hdf5 files.
  3. Train piano note transcription system.
  4. Train piano pedal transcription system.
  5. Combine piano note and piano pedal transcription systems.
  6. Evaluate.

All training steps are described in runme.sh. It worth looking into runme.sh to see how the piano transcription system is trained. In total 29 GB GPU memoroy is required with a batch size of 12. Users may consider to reduce the batch size, or use multiple GPU cards to train this system.

Results

The training uses a single Tesla-V100-PCIE-32GB card. The system is trained for 300k iterations for one week. The training looks like:

Namespace(augmentation='none', batch_size=12, cuda=True, early_stop=300000, filename='main', learning_rate=0.0005, loss_type='regress_onset_offset_frame_velocity_bce', max_note_shift=0, mini_data=False, mode='train', model_type='Regress_onset_offset_frame_velocity_CRNN', reduce_iteration=10000, resume_iteration=0, workspace='.../workspaces/piano_transcription')
Using GPU.
train segments: 571589
Evaluate train segments: 571589
Evaluate validation segments: 68646
Evaluate test segments: 71959
------------------------------------
Iteration: 0
    Train statistics: {'frame_ap': 0.0613, 'reg_onset_mae': 0.514, 'reg_offset_mae': 0.482, 'velocity_mae': 0.1362}
    Validation statistics: {'frame_ap': 0.0605, 'reg_onset_mae': 0.5143, 'reg_offset_mae': 0.4819, 'velocity_mae': 0.133}
    Test statistics: {'frame_ap': 0.0601, 'reg_onset_mae': 0.5139, 'reg_offset_mae': 0.4821, 'velocity_mae': 0.1283}
    Dump statistics to .../workspaces/piano_transcription/statistics/main/Regress_onset_offset_frame_velocity_CRNN/loss_type=regress_onset_offset_frame_velocity_bce/augmentation=none/batch_size=12/statistics.pkl
    Dump statistics to .../workspaces/piano_transcription/statistics/main/Regress_onset_offset_frame_velocity_CRNN/loss_type=regress_onset_offset_frame_velocity_bce/augmentation=none/batch_size=12/statistics_2020-04-28_00-22-33.pickle
Train time: 5.498 s, validate time: 92.863 s
Model saved to .../workspaces/piano_transcription/checkpoints/main/Regress_onset_offset_frame_velocity_CRNN/loss_type=regress_onset_offset_frame_velocity_bce/augmentation=none/batch_size=12/0_iterations.pth
------------------------------------
...
------------------------------------
Iteration: 300000
    Train statistics: {'frame_ap': 0.9439, 'reg_onset_mae': 0.091, 'reg_offset_mae': 0.127, 'velocity_mae': 0.0241}
    Validation statistics: {'frame_ap': 0.9245, 'reg_onset_mae': 0.0985, 'reg_offset_mae': 0.1327, 'velocity_mae': 0.0265}
    Test statistics: {'frame_ap': 0.9285, 'reg_onset_mae': 0.097, 'reg_offset_mae': 0.1353, 'velocity_mae': 0.027}
    Dump statistics to .../workspaces/piano_transcription/statistics/main/Regress_onset_offset_frame_velocity_CRNN/loss_type=regress_onset_offset_frame_velocity_bce/augmentation=none/batch_size=12/statistics.pkl
    Dump statistics to .../workspaces/piano_transcription/statistics/main/Regress_onset_offset_frame_velocity_CRNN/loss_type=regress_onset_offset_frame_velocity_bce/augmentation=none/batch_size=12/statistics_2020-04-28_00-22-33.pickle
Train time: 8953.815 s, validate time: 93.683 s
Model saved to .../workspaces/piano_transcription/checkpoints/main/Regress_onset_offset_frame_velocity_CRNN/loss_type=regress_onset_offset_frame_velocity_bce/augmentation=none/batch_size=12/300000_iterations.pth

Visualization of piano transcription

Demo 1. Lang Lang: Franz Liszt - Love Dream (Liebestraum) [audio] [transcribed_midi]

Demo 2. Andras Schiff: J.S.Bach - French Suites [audio] [transcribed_midi]

FAQs

If users met running out of GPU memory error, then try to reduce batch size.

LICENSE

Apache 2.0

Applications

We have built a large-scale classical piano MIDI dataset using our piano transcription system. See https://github.com/bytedance/GiantMIDI-Piano for details.

Contact

Qiuqiang Kong, [email protected]

Cite

[1] Qiuqiang Kong, Bochen Li, Xuchen Song, Yuan Wan, and Yuxuan Wang. "High-resolution Piano Transcription with Pedals by Regressing Onsets and Offsets Times." arXiv preprint arXiv:2010.01815 (2020). [pdf]

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 98.5%
  • Shell 1.5%