A basic machine learning library built in Rust.
- Data Loading & Transforming
- Z and MinMax Normalisation
- Transforms
- Common transform functions (log, pow, etcetera)
- Loading from CSV
- Linear Regression
- Logistic Regression
- Support Vector Machine
- Loss Functions
- Mean Squared Error
- Binary Cross Entropy (Log Loss)
- Hinge Loss
- Performance evaluation metrics
- Accuracy
- Loss
- Precision
- Recall
- F-Score
- Activation Functions
- Sigmoid
- ReLU
- Softmax
- Leaky ReLU
- Kernel Functions
- Linear
- Polynomial
- Radial Basis Function
- Optimisers
- Stochastic Gradient Descent
- Adam
- Neural Networks
- MLP
- Forward Propagation
- Backward Propagation
- Convolutional
- Forward Propagation
- Backward Propagation
- MLP
- Clustering
- K-Means Clustering
- Hierarchical Clustering
Future additions
- Decision Tree
- Random Forest
- Dice Loss
- Pooling
- Maxpool
- Minpool
- Average Pool
- Regularisation
- L1
- L2
- Normalisation
- Batch normalisation
- Dropout
- Hyperparameter Scheduler