Skip to content

LukasKaspras/ginkgo_datacase_interview

Repository files navigation

ginkgo_datacase_interview

Work related to the data case for my job interview at Ginkgo Analytics. Specifically, a short exploration and modelling of sensor data in order to predict and warn about upcoming device failures.

To create the data:

Run make_dataset.py and make_features.py.

To build and evaluate the model:

Run train_model.py.

Project Organization

├── LICENSE
├── README.md          <- The top-level README for developers using this project.
├── data
│   ├── external       <- Data from third party sources.
│   ├── interim        <- Intermediate data that has been transformed.
│   ├── processed      <- The final, canonical data sets for modeling.
│   └── raw            <- The original, immutable data dump.
│
├── docs               <- A default Sphinx project; see sphinx-doc.org for details
│
├── models             <- Trained and serialized models, model predictions, or model summaries
│
├── notebooks          <- Jupyter notebooks. Naming convention is a number (for ordering),
│                         the creator's initials, and a short `-` delimited description, e.g.
│                         `1.0-jqp-initial-data-exploration`.
│
├── references         <- Data dictionaries, manuals, and all other explanatory materials.
│
├── reports            <- Generated analysis as HTML, PDF, LaTeX, etc.
│   └── figures        <- Generated graphics and figures to be used in reporting
│
├── requirements.txt   <- The requirements file for reproducing the analysis environment, e.g.
│                         generated with `pip freeze > requirements.txt`
│
├── setup.py           <- makes project pip installable (pip install -e .) so src can be imported
└── src                <- Source code for use in this project.
    ├── __init__.py    <- Makes src a Python module
    │
    ├── data           <- Scripts to download or generate data
    │   ├── make_dataset.py
    │   └── pull_sensor_data.py
    │
    ├── features       <- Scripts to turn raw data into features for modeling
    │   ├── make_features.py
    │   ├── helper.py  <- Miscellanous functions
    │   └── relabel_and_clean_nan.py 
    │
    ├── models         <- Scripts to train models and then use trained models to make
    │   │                 predictions
    │   └── train_model.py
    │
    └── visualization  <- Scripts to create exploratory and results oriented visualizations
        └── visualize.py

Project based on the cookiecutter data science project template. #cookiecutterdatascience

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages