Skip to content

Lyusungwon/relational_network_pytorch

Repository files navigation

SARN: Sequential Attention Relational Network

This is Pytorch implementation of our work "SARN: Relational Reasoning through Sequential Attention ". image We tried to solve exploding relations(quadratic) problem of Relational Network module by paying attention sequentially.

Requirements

  • Pytorch 0.4

Benchmarks

Baseline

python main.py --model baseline

Relational Network

python main.py --model rn

FILM

python main.py --model film

SARN

python main.py --model sarn

SARN att(Work in progress)

python main.py --model sarn_att

Results

Results of benchmarks with varying size of image and objects on modified Sort-Of-Clevr dataset.\

model image - object 64 - 4 64 - 5 75 - 5 128 - 4 128 - 5 128 - 8 128 - 16
baseline non-rel 0.9941 0.9933 0.9961 0.9883 0.9978 0.9883 -
baseline rel 0.812 0.8163 0.8205 0.7227 0.8532 0.7227 -
baseline total 0.8803 0.8827 0.8864 0.8223 0.9074 0.8223 -
rn non-rel 0.9944 0.9964 0.9961 0.9922 0.9931 0.9922 0.9719
rn rel 0.8415 0.843 0.8517 0.826 0.7719 0.826 0.7708
rn total 0.8989 0.9005 0.9058 0.8883 0.8555 0.8883 0.8462
sarn non-rel 0.997 0.9948 0.9986 0.9992 0.9988 0.9992 0.9819
sarn rel 0.8949 0.837 0.9 0.931 0.8669 0.931 0.8533
sarn total 0.9345 0.897 0.9347 0.9566 0.9163 0.9566 0.9016

Reference

About

Pytorch implementation of relational network

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages