Skip to content

Framework for Multimodal Deformable Image Registration. Coordinated equivariant representation learning (CoMIR) combined with robust deformable registration by INSPIRE.

Notifications You must be signed in to change notification settings

MIDA-group/CoMIR_INSPIRE

Repository files navigation

CoMIR_INSPIRE

Code of the ISBI 2022 paper: "Contrastive Learning of Equivariant Image Representations for Multimodal Deformable Registration". L. Nordling, J. Öfverstedt, J. Lindblad, N. Sladoje. 20th IEEE International Symposium on Biomedical Imaging (ISBI), IEEE, Cartagena, Colombia, April 2023.

A method for multimodal deformable image registration which combines a powerful deep learning approach to generate CoMIRs, dense image-like representations of multimodal image pairs, with INSPIRE, a robust framework for monomodal deformable image registration. Incorporates additional equivariance constraints for improved consistency of CoMIRs under deformation.

Installation

See setup_instructions.txt for installation of prerequisities

Training

Use train_comir.py for training a CoMIR model

Example command to run a model on GPU 0 with affine equivariance imposed

CUDA_VISIBLE_DEVICES=0 python train_comir.py /path/to/modaloty/A/ /path/to/modaloty/B/ -export_folder path/to/model/save/ -logdir path/to/tensorboard/logs/ -log_a 1 -iterations 300 -l2 0.1 -equivariance affine

For all parameters see train_comir.py

Inference

To create a dataset with synthetic b-spline deformations on modality A and to generate CoMIRs run generate_deformed_dataset.py

CUDA_VISIBLE_DEVICES=0 python generate_deformed_dataset.py path/to/model path/to/modality/A/ path/to/modality/B/ /path/to/generated/dataset/ <displacement>

To only generate CoMIRs run inference_comir.py

Registration

See INSPIRE documentation for registration. The method can be tested and compared with elastix by using test_registration.py

To register images with generated CoMIRs, use register_comir.py

References

[1] Pielawski, N., Wetzer, E., Öfverstedt, J., Lu, J., Wählby, C., Lindblad, J., & Sladoje, N. (2020). CoMIR: Contrastive multimodal image representation for registration. Advances in neural information processing systems, 33, 18433-18444. [2] J. Ofverstedt, J. Lindblad, and N. Sladoje, “INSPIRE: Intensity and Spatial Information-Based Deformable Image Registration” Preprint arXiv:2012.07208v2, 2023, To appear in PLOS ONE, 2023. https://github.com/MIDA-group/inspire

Registration examples

Cytological Dataset

Example 1

cytological registration example 1

Example 2

cytological registration example 2

Histological Dataset

Example 1

Histological registration example 1

Example 2

Histological registration example 2

Zurich Dataset

Example 1

Zurich registration example 1

Example 2

Zurich registration example 2

About

Framework for Multimodal Deformable Image Registration. Coordinated equivariant representation learning (CoMIR) combined with robust deformable registration by INSPIRE.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages