Skip to content
/ SGEANet Public

The code for paper 《Synthetic Guided Domain Adaptive and Edge Aware Network for Crowd Counting》

Notifications You must be signed in to change notification settings

MRJTM/SGEANet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SGDANet

1.Introduction

Official Implement for the paper《Synthetic Guided Domain Adaptive and Edge Aware Network for Crowd Counting》that published in the journal 《Image and Vision Computing》. In this project, you train a CSRNet or our SGEANet on ShanghaiTech dataset.

图片名称

2.Project Organization

The folders are organized as follows:

  • data: dataset processing code, image list file, the soft link of dataset folders.
  • experiment: config file for training, testing.
  • images: images to show on this readme.md
  • main: two main scripts, train.py and val.py.
  • src: all other codes

3.Requirement

  • pytorch=1.1.0
  • torchvision
  • progressbar
  • visdom

4.Tutorial

(1) prepare dataset

  • Download ShanghaiTech dataset from Shanghaitech
  • Create soft link to the data folder in this project
ln -s to/path/ShanghaiTech_PartA data/SHA
  • Generate synthetic data, density map ground truth, save gt number and make a image list file in json format.
python data/prepare_dataset/SHA/make_ga_synthetic.py
python data/prepare_dataset/SHA/make_ga_gt.py
python data/prepare_dataset/SHA/save_gt_num.py
python data/prepare_dataset/SHA/make_json.py

(2) training real and synthetic baseline model

sh train.sh experiment/SHA/SGEANet/syn_baseline.yaml
sh train.sh experiment/SHA/SGEANet/real_baseline.yaml

(3) training SGEANet

sh train.sh experiment/SHA/SGEANet/real_baseline_LSG_LME.yaml

(4) evaluating

sh val.sh experiment/SHA/SGEANet/syn_baseline.yaml
sh val.sh experiment/SHA/SGEANet/real_baseline.yaml
sh val.sh experiment/SHA/SGEANet/real_baseline_LSG_LME.yaml

Bellow is a demo of predicted density maps from different methods.

图片名称

5.Citation

If you use this code for your research, please cite our paper:

图片名称

About

The code for paper 《Synthetic Guided Domain Adaptive and Edge Aware Network for Crowd Counting》

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published