@inproceedings{lin2018layoutestimation,
Author = {Hung Jin Lin and Sheng-Wei Huang and Shang-Hong Lai and Chen-Kuo Chiang},
Title = {Indoor Scene Layout Estimation from a Single Image},
Booktitle = {2018 24th International Conference on Pattern Recognition (ICPR)},
Year = {2018}
}
The code is under evaluation and update TBD. Deprecated information below.
- Python 3.6+
- OneGAN >=
0.3.0
scikit-image
andclick
,tqdm
-
Dataset
-
Put
LSUN Room Layout Dataset
in folder../data/lsun_room
relative to this project.images/
: RGB color image*.jpg
of indoor room scenelayout_seg/
: layout ground truth*.mat
of indoor room scenelayout_seg_images/
: generated layout ground truth*.png
of indoor room scene
-
Put
SUN RGB-D Dataset
in folder../data/sun_rgbd
relative to this project.images/
: RGB color image*.jpg
intrain
andtest
respectly.labels/
: layout ground truth*.png
intrain
andtest
respectly.
-
-
Toolkit
- Put
LSUN Room Layout Dataset
toolkit in folder../lsun_toolkit
- Integrated scripts (TBD)
- Put
-
Training
python main.py Usage: main.py [OPTIONS] Options: --name TEXT --dataset [lsun_room | others] --dataset_root TEXT --log_dir TEXT --image_size <INTEGER INTEGER> --epochs INTEGER --batch_size INTEGER --workers INTEGER --l1_weight FLOAT --resume PATH
-
Demo
python demo.py Usage: demo.py [OPTIONS] Options: --device INTEGER --video TEXT --weight TEXT --input_size <INTEGER INTEGER>.
-
Evaluate with offical Matlab toolkit
matlab -nojvm -nodisplay -nosplash -r "demo('$EXPERIMENT_OUTPUT_FODLER'); exit;"
-
Re-label
- Output layout image (range from 1-5)
python script/re_label.py