Skip to content

Commit

Permalink
Merge pull request #6 from MadAnalysis/histos
Browse files Browse the repository at this point in the history
Histogram Reader
  • Loading branch information
jackaraz authored May 30, 2022
2 parents c73b051 + f464e11 commit 843c0cf
Show file tree
Hide file tree
Showing 8 changed files with 587 additions and 4 deletions.
43 changes: 41 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,12 @@
## Installation
`pip install ma5-expert`

## Cutflow Collection
## Outline
* [Cutflow Collection](#cutflow-collection)
* [Histogram Collection](#histogram-collection)
* [Citation](#citation)

### Cutflow Collection

* Parse all the signal regions and construct an object-base, interactable cutflow.
* Write combined LaTeX tables for different samples.
Expand Down Expand Up @@ -141,7 +146,41 @@ ATLAS.addSignalRegion('SRA_H', ma5.SRA_H.CutNames, SRA_presel+[7.0])
```
where all properties shown above applies to this new object as well.

## Citation
### Histogram Collection

* Parse all the histograms available in the `Histos.saf` file into interactable histogram object.

```python
import ma5_expert as ma5
collection = ma5.histogram.Collection(
"examples/mass1000005_300.0_mass1000022_60.0_mass1000023_250.0_xs_5.689/Output/SAF/defaultset/atlas_susy_2018_31/Histograms/histos.saf",
xsection=5.689, lumi=139.
)

print(collection)
# Collection of 6 histograms from examples/mass1000005_300.0_mass1000022_60.0_mass1000023_250.0_xs_5.689/Output/SAF/defaultset/atlas_susy_2018_31/Histograms
# * MadAnalysis 5 Histogram: SRA_Meff
# * MadAnalysis 5 Histogram: SRA_Mh
# * MadAnalysis 5 Histogram: SRB_PTj1
# * MadAnalysis 5 Histogram: SRB_MhAvg
# * MadAnalysis 5 Histogram: SRC_MET
# * MadAnalysis 5 Histogram: SRC_Sig
```

Extract the plotting information:
```python
xbins, bins, weights = collection.lumi_histogram("SRA_Mh")
plt.hist(xbins, bins=bins, weights=weights)
plt.xlabel("$M_{h}\ {\\rm [GeV]}$")
plt.ylabel("${\\rm Number\ of\ events}$")
plt.xlim([min(bins), max(bins)])
plt.show()
```
<p align="center">
<img src="./examples/SRA_Mh.png" alt="SRA_Mh" style="width:400px;"/>
</p>

### Citation
Developed for [arXiv:2006.09387](http://arxiv.org/abs/2006.09387)

```bibtex
Expand Down
Binary file added examples/SRA_Mh.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
4 changes: 2 additions & 2 deletions setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,15 +12,15 @@

setup(
name="ma5_expert",
version="1.0.5",
version="2.0.0",
description=("MadAnalysis 5 interpreter for Expert mode"),
long_description=long_description,
long_description_content_type="text/markdown",
url="https://github.com/MadAnalysis/ma5_expert",
project_urls={
"Bug Tracker": "https://github.com/MadAnalysis/ma5_expert/issues",
},
download_url = "https://github.com/MadAnalysis/ma5_expert/archive/refs/tags/v1.0.4.tar.gz",
download_url = "https://github.com/MadAnalysis/ma5_expert/archive/refs/tags/v2.0.0.tar.gz",
author="Jack Y. Araz",
author_email=("[email protected]"),
license="MIT",
Expand Down
1 change: 1 addition & 0 deletions src/ma5_expert/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,5 +10,6 @@
log.setLevel(logging.INFO)

from ma5_expert import cutflow
from ma5_expert import histogram

__all__ = cutflow.__all__
1 change: 1 addition & 0 deletions src/ma5_expert/histogram/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
from .reader import Collection
45 changes: 45 additions & 0 deletions src/ma5_expert/histogram/bin.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,45 @@
class Bin:
"""
Histogram bin object
Parameters
----------
sumw: float
sum of weights
bin_max: float
maximum bin limit
bin_min: float
minimum bin limit
underflow: bool
is this underflow bin
overflow: bool
is this overflow bin
"""
def __init__(
self,
sumw: float,
underflow: bool = False,
overflow: bool = False,
):
self._sumw = sumw
self._underflow = underflow
self._overflow = overflow

@property
def isUnderflow(self) -> bool:
""" Is this underflow bin? """
return self._underflow

@property
def isOverflow(self) -> bool:
""" Is this overflow bin? """
return self._overflow

@property
def sumW(self) -> float:
""" Sum of Weights """
return self._sumw

def eff(self, total_sumw: float) -> float:
""" Return bin efficiency """
return self._sumw / total_sumw if total_sumw > 0 else float("inf")
156 changes: 156 additions & 0 deletions src/ma5_expert/histogram/histo.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,156 @@
import numpy as np

from .bin import Bin
from typing import Sequence, Text, Union, MutableSequence


class Histo:
"""
Object oriented Histogram definition
"""

name: Text
ID: int
_nbins: int
regions: Sequence[Text]
_nEvents: int
_normEwEvents: float
_nEntries: float
_normEwEntries: float
_sumWeightsSq: float
_sumValWeight: float
_sumValSqWeight: float
_xmin: float
_xmax: float
_bins: MutableSequence[Bin]
_normalisation_frac: Union[float, Text]

def __init__(self):
self.ID = -1
self.name = "__unknown_histo__"
self._nbins = 0
self.regions = []
self._nEvents = 0
self._normEwEvents = 0
self._nEntries = 0
self._normEwEntries = 0
self._sumWeightsSq = 0
self._sumValWeight = 0
self._sumValSqWeight = 0
self._xmin = 0
self._xmax = 0
self._bins = []
self._normalisation_frac = "_normEwEvents"

def __repr__(self):
return f"MadAnalysis 5 Histogram: {self.name}"

@property
def weight_normalisation(self) -> float:
"""
Retrun the weight normalisation factor. Typically this is the value to normalise the
sum of weights per bin, hence the total sum of weights of the sample. By default,
weigted sum of entries are used.
"""
if isinstance(self._normalisation_frac, str):
return getattr(self, self._normalisation_frac)
else:
return self._normalisation_frac

@weight_normalisation.setter
def weight_normalisation(self, value: float):
if not isinstance(value, float):
raise ValueError("Input can only be float.")
self._normalisation_frac = value

@property
def size(self):
return self._nbins

def _add_bin(self, bin_info: dict) -> None:
"""
Add a bin to the histogram
Parameters
----------
bin_info: dict
bin information
Raises
-------
AssertionError:
If the histogram name and ID information does not match the info can not be added.
"""
if self.ID == -1 and self.name == "__unknown_histo__":
self.ID = int(bin_info["ID"])
self.name = bin_info["name"]
self._nbins = int(bin_info["nbins"])
self.regions = bin_info["region"]
self._nEvents = int(bin_info["nEvents"])
self._normEwEvents = float(bin_info["normEwEvents"])
self._nEntries = float(bin_info["normEwEvents"])
self._normEwEntries = float(bin_info["normEwEntries"])
self._sumWeightsSq = float(bin_info["sumWeightsSq"])
self._sumValWeight = float(bin_info["sumValWeight"])
self._sumValSqWeight = float(bin_info["sumValSqWeight"])
self._xmin = float(bin_info["xmin"])
self._xmax = float(bin_info["xmax"])
self._bins.append(
Bin(float(bin_info["value"]), bin_info["isUnderflow"], bin_info["isOverflow"])
)

else:
assert (
self.ID == int(bin_info["ID"]) and self.name == bin_info["name"]
), "Merging different types of histograms are not allowed."
self._bins.append(
Bin(float(bin_info["value"]), bin_info["isUnderflow"], bin_info["isOverflow"])
)

def _w(self, weight: float):
return np.array(
[
b.eff(self.weight_normalisation) * weight
for b in self._bins
if not (b.isOverflow or b.isUnderflow)
],
dtype=np.float32,
)

@property
def weights(self) -> np.ndarray:
return self._w(1.0)

def norm_weights(self, xsec: float) -> np.ndarray:
"""
Normalised bin weights with respect to cross-section.
This function does not include overflow or underflow bins
Parameters
----------
xsec: float
cross section in pb
"""
return self._w(xsec)

def lumi_weights(self, xsec: float, lumi: float) -> np.ndarray:
"""
Normalised bin weights with respect to cross section and luminosity.
This function does not include overflow or underflow bins
Parameters
----------
xsec: float
cross-section in pb
lumi: float
luminosity in 1/fb
"""
return self._w(xsec * 1000.0 * lumi)

@property
def bins(self) -> np.ndarray:
return np.linspace(self._xmin, self._xmax, self.size + 1)

@property
def xbins(self) -> np.ndarray:
return np.linspace(self._xmin, self._xmax, self.size)
Loading

0 comments on commit 843c0cf

Please sign in to comment.