Official repository for U-Mamba: Enhancing Long-range Dependency for Biomedical Image Segmentation. Welcome to join our mailing list to get updates.
Requirements: Ubuntu 20.04
, CUDA 11.7
- Create a virtual environment:
conda create -n umamba python=3.10 -y
andconda activate umamba
- Install Pytorch 2.0.1:
pip install torch==2.0.1 torchvision==0.15.2
- Install Mamba:
pip install causal-conv1d==1.1.1
andpip install mamba-ssm
- Download code:
git clone https://github.com/bowang-lab/U-Mamba
cd U-Mamba/umamba
and runpip install -e .
sanity test: Enter python command-line interface and run
import torch
import mamba_ssm
visual_seg.mp4
Download dataset here and put them into the data
folder. U-Mamaba is built on the popular nnU-Net framework. If you want to train U-Mamba on your own dataset, please follow this guideline to prepare the dataset.
nnUNetv2_plan_and_preprocess -d DATASET_ID --verify_dataset_integrity
- Train 2D
U-Mamba_Bot
model
nnUNetv2_train DATASET_ID 2d all -tr nnUNetTrainerUMambaBot
- Train 2D
U-Mamba_Enc
model
nnUNetv2_train DATASET_ID 2d all -tr nnUNetTrainerUMambaEnc
- Train 3D
U-Mamba_Bot
model
nnUNetv2_train DATASET_ID 3d_fullres all -tr nnUNetTrainerUMambaBot
- Train 3D
U-Mamba_Enc
model
nnUNetv2_train DATASET_ID 3d_fullres all -tr nnUNetTrainerUMambaEnc
- Predict testing cases with
U-Mamba_Bot
model
nnUNetv2_predict -i INPUT_FOLDER -o OUTPUT_FOLDER -d DATASET_ID -c CONFIGURATION -tr nnUNetTrainerUMambaBot --disable_tta
- Predict testing cases with
U-Mamba_Enc
model
nnUNetv2_predict -i INPUT_FOLDER -o OUTPUT_FOLDER -d DATASET_ID -c CONFIGURATION -tr nnUNetTrainerUMambaEnc --disable_tta
CONFIGURATION
can be2d
and3d_fullres
for 2D and 3D models, respectively.
@article{U-Mamba,
title={U-Mamba: Enhancing Long-range Dependency for Biomedical Image Segmentation},
author={Ma, Jun and Li, Feifei and Wang, Bo},
journal={arXiv preprint arXiv:2401.04722},
year={2024}
}
We acknowledge all the authors of the employed public datasets, allowing the community to use these valuable resources for research purposes. We also thank the authors of nnU-Net and Mamba for making their valuable code publicly available.