forked from Adibian/Persian-MultiSpeaker-Tacotron2
-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit c70b6ed
Showing
78 changed files
with
7,087 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,22 @@ | ||
*.pyc | ||
*.aux | ||
*.log | ||
*.out | ||
*.synctex.gz | ||
*.suo | ||
*__pycache__ | ||
*.idea | ||
*.ipynb_checkpoints | ||
*.pickle | ||
*.npy | ||
*.blg | ||
*.bbl | ||
*.bcf | ||
*.toc | ||
*.wav | ||
*.sh | ||
encoder/saved_models/* | ||
synthesizer/saved_models/* | ||
vocoder/saved_models/* | ||
saved_models/* | ||
dataset/* |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,208 @@ | ||
import argparse | ||
import os | ||
from pathlib import Path | ||
|
||
import librosa | ||
import numpy as np | ||
import soundfile as sf | ||
import torch | ||
|
||
from encoder import inference as encoder | ||
from encoder.params_model import model_embedding_size as speaker_embedding_size | ||
from synthesizer.inference import Synthesizer | ||
from utils.argutils import print_args | ||
from utils.default_models import ensure_default_models | ||
from vocoder import inference as vocoder | ||
|
||
|
||
if __name__ == '__main__': | ||
parser = argparse.ArgumentParser( | ||
formatter_class=argparse.ArgumentDefaultsHelpFormatter | ||
) | ||
parser.add_argument("-e", "--enc_model_fpath", type=Path, | ||
default="saved_models/default/encoder.pt", | ||
help="Path to a saved encoder") | ||
parser.add_argument("-s", "--syn_model_fpath", type=Path, | ||
default="saved_models/default/synthesizer.pt", | ||
help="Path to a saved synthesizer") | ||
parser.add_argument("-v", "--voc_model_fpath", type=Path, | ||
default="saved_models/default/vocoder.pt", | ||
help="Path to a saved vocoder") | ||
parser.add_argument("--cpu", action="store_true", help=\ | ||
"If True, processing is done on CPU, even when a GPU is available.") | ||
parser.add_argument("--no_sound", action="store_true", help=\ | ||
"If True, audio won't be played.") | ||
parser.add_argument("--seed", type=int, default=None, help=\ | ||
"Optional random number seed value to make toolbox deterministic.") | ||
args = parser.parse_args() | ||
arg_dict = vars(args) | ||
print_args(args, parser) | ||
|
||
# Hide GPUs from Pytorch to force CPU processing | ||
if arg_dict.pop("cpu"): | ||
os.environ["CUDA_VISIBLE_DEVICES"] = "-1" | ||
|
||
print("Running a test of your configuration...\n") | ||
|
||
if torch.cuda.is_available(): | ||
device_id = torch.cuda.current_device() | ||
gpu_properties = torch.cuda.get_device_properties(device_id) | ||
## Print some environment information (for debugging purposes) | ||
print("Found %d GPUs available. Using GPU %d (%s) of compute capability %d.%d with " | ||
"%.1fGb total memory.\n" % | ||
(torch.cuda.device_count(), | ||
device_id, | ||
gpu_properties.name, | ||
gpu_properties.major, | ||
gpu_properties.minor, | ||
gpu_properties.total_memory / 1e9)) | ||
else: | ||
print("Using CPU for inference.\n") | ||
|
||
## Load the models one by one. | ||
print("Preparing the encoder, the synthesizer and the vocoder...") | ||
ensure_default_models(Path("saved_models")) | ||
encoder.load_model(args.enc_model_fpath) | ||
synthesizer = Synthesizer(args.syn_model_fpath) | ||
vocoder.load_model(args.voc_model_fpath) | ||
|
||
|
||
## Run a test | ||
print("Testing your configuration with small inputs.") | ||
# Forward an audio waveform of zeroes that lasts 1 second. Notice how we can get the encoder's | ||
# sampling rate, which may differ. | ||
# If you're unfamiliar with digital audio, know that it is encoded as an array of floats | ||
# (or sometimes integers, but mostly floats in this projects) ranging from -1 to 1. | ||
# The sampling rate is the number of values (samples) recorded per second, it is set to | ||
# 16000 for the encoder. Creating an array of length <sampling_rate> will always correspond | ||
# to an audio of 1 second. | ||
print("\tTesting the encoder...") | ||
encoder.embed_utterance(np.zeros(encoder.sampling_rate)) | ||
|
||
# Create a dummy embedding. You would normally use the embedding that encoder.embed_utterance | ||
# returns, but here we're going to make one ourselves just for the sake of showing that it's | ||
# possible. | ||
embed = np.random.rand(speaker_embedding_size) | ||
# Embeddings are L2-normalized (this isn't important here, but if you want to make your own | ||
# embeddings it will be). | ||
embed /= np.linalg.norm(embed) | ||
# The synthesizer can handle multiple inputs with batching. Let's create another embedding to | ||
# illustrate that | ||
embeds = [embed, np.zeros(speaker_embedding_size)] | ||
texts = ["test 1", "test 2"] | ||
print("\tTesting the synthesizer... (loading the model will output a lot of text)") | ||
mels = synthesizer.synthesize_spectrograms(texts, embeds) | ||
|
||
# The vocoder synthesizes one waveform at a time, but it's more efficient for long ones. We | ||
# can concatenate the mel spectrograms to a single one. | ||
mel = np.concatenate(mels, axis=1) | ||
# The vocoder can take a callback function to display the generation. More on that later. For | ||
# now we'll simply hide it like this: | ||
no_action = lambda *args: None | ||
print("\tTesting the vocoder...") | ||
# For the sake of making this test short, we'll pass a short target length. The target length | ||
# is the length of the wav segments that are processed in parallel. E.g. for audio sampled | ||
# at 16000 Hertz, a target length of 8000 means that the target audio will be cut in chunks of | ||
# 0.5 seconds which will all be generated together. The parameters here are absurdly short, and | ||
# that has a detrimental effect on the quality of the audio. The default parameters are | ||
# recommended in general. | ||
vocoder.infer_waveform(mel, target=200, overlap=50, progress_callback=no_action) | ||
|
||
print("All test passed! You can now synthesize speech.\n\n") | ||
|
||
|
||
## Interactive speech generation | ||
print("This is a GUI-less example of interface to SV2TTS. The purpose of this script is to " | ||
"show how you can interface this project easily with your own. See the source code for " | ||
"an explanation of what is happening.\n") | ||
|
||
print("Interactive generation loop") | ||
num_generated = 0 | ||
while True: | ||
try: | ||
# Get the reference audio filepath | ||
message = "Reference voice: enter an audio filepath of a voice to be cloned (mp3, " \ | ||
"wav, m4a, flac, ...):\n" | ||
in_fpath = Path(input(message).replace("\"", "").replace("\'", "")) | ||
|
||
## Computing the embedding | ||
# First, we load the wav using the function that the speaker encoder provides. This is | ||
# important: there is preprocessing that must be applied. | ||
|
||
# The following two methods are equivalent: | ||
# - Directly load from the filepath: | ||
preprocessed_wav = encoder.preprocess_wav(in_fpath) | ||
# - If the wav is already loaded: | ||
original_wav, sampling_rate = librosa.load(str(in_fpath)) | ||
preprocessed_wav = encoder.preprocess_wav(original_wav, sampling_rate) | ||
print("Loaded file succesfully") | ||
|
||
# Then we derive the embedding. There are many functions and parameters that the | ||
# speaker encoder interfaces. These are mostly for in-depth research. You will typically | ||
# only use this function (with its default parameters): | ||
embed = encoder.embed_utterance(preprocessed_wav) | ||
print("Created the embedding") | ||
|
||
|
||
## Generating the spectrogram | ||
text = input("Write a sentence (+-20 words) to be synthesized:\n") | ||
|
||
# If seed is specified, reset torch seed and force synthesizer reload | ||
if args.seed is not None: | ||
torch.manual_seed(args.seed) | ||
synthesizer = Synthesizer(args.syn_model_fpath) | ||
|
||
# The synthesizer works in batch, so you need to put your data in a list or numpy array | ||
texts = [text] | ||
embeds = [embed] | ||
# If you know what the attention layer alignments are, you can retrieve them here by | ||
# passing return_alignments=True | ||
specs = synthesizer.synthesize_spectrograms(texts, embeds) | ||
spec = specs[0] | ||
print("Created the mel spectrogram") | ||
|
||
|
||
## Generating the waveform | ||
print("Synthesizing the waveform:") | ||
|
||
# If seed is specified, reset torch seed and reload vocoder | ||
if args.seed is not None: | ||
torch.manual_seed(args.seed) | ||
vocoder.load_model(args.voc_model_fpath) | ||
|
||
# Synthesizing the waveform is fairly straightforward. Remember that the longer the | ||
# spectrogram, the more time-efficient the vocoder. | ||
generated_wav = vocoder.infer_waveform(spec) | ||
|
||
|
||
## Post-generation | ||
# There's a bug with sounddevice that makes the audio cut one second earlier, so we | ||
# pad it. | ||
generated_wav = np.pad(generated_wav, (0, synthesizer.sample_rate), mode="constant") | ||
|
||
# Trim excess silences to compensate for gaps in spectrograms (issue #53) | ||
generated_wav = encoder.preprocess_wav(generated_wav) | ||
|
||
# Play the audio (non-blocking) | ||
if not args.no_sound: | ||
import sounddevice as sd | ||
try: | ||
sd.stop() | ||
sd.play(generated_wav, synthesizer.sample_rate) | ||
except sd.PortAudioError as e: | ||
print("\nCaught exception: %s" % repr(e)) | ||
print("Continuing without audio playback. Suppress this message with the \"--no_sound\" flag.\n") | ||
except: | ||
raise | ||
|
||
# Save it on the disk | ||
filename = "demo_output_%02d.wav" % num_generated | ||
print(generated_wav.dtype) | ||
sf.write(filename, generated_wav.astype(np.float32), synthesizer.sample_rate) | ||
num_generated += 1 | ||
print("\nSaved output as %s\n\n" % filename) | ||
|
||
|
||
except Exception as e: | ||
print("Caught exception: %s" % repr(e)) | ||
print("Restarting\n") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,37 @@ | ||
import argparse | ||
import os | ||
from pathlib import Path | ||
|
||
from toolbox import Toolbox | ||
from utils.argutils import print_args | ||
from utils.default_models import ensure_default_models | ||
|
||
|
||
if __name__ == '__main__': | ||
parser = argparse.ArgumentParser( | ||
description="Runs the toolbox.", | ||
formatter_class=argparse.ArgumentDefaultsHelpFormatter | ||
) | ||
|
||
parser.add_argument("-d", "--datasets_root", type=Path, help= \ | ||
"Path to the directory containing your datasets. See toolbox/__init__.py for a list of " | ||
"supported datasets.", default=None) | ||
parser.add_argument("-m", "--models_dir", type=Path, default="saved_models", | ||
help="Directory containing all saved models") | ||
parser.add_argument("--cpu", action="store_true", help=\ | ||
"If True, all inference will be done on CPU") | ||
parser.add_argument("--seed", type=int, default=None, help=\ | ||
"Optional random number seed value to make toolbox deterministic.") | ||
args = parser.parse_args() | ||
arg_dict = vars(args) | ||
print_args(args, parser) | ||
|
||
# Hide GPUs from Pytorch to force CPU processing | ||
if arg_dict.pop("cpu"): | ||
os.environ["CUDA_VISIBLE_DEVICES"] = "-1" | ||
|
||
# Remind the user to download pretrained models if needed | ||
ensure_default_models(args.models_dir) | ||
|
||
# Launch the toolbox | ||
Toolbox(**arg_dict) |
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,117 @@ | ||
from scipy.ndimage.morphology import binary_dilation | ||
from encoder.params_data import * | ||
from pathlib import Path | ||
from typing import Optional, Union | ||
from warnings import warn | ||
import numpy as np | ||
import librosa | ||
import struct | ||
|
||
try: | ||
import webrtcvad | ||
except: | ||
warn("Unable to import 'webrtcvad'. This package enables noise removal and is recommended.") | ||
webrtcvad=None | ||
|
||
int16_max = (2 ** 15) - 1 | ||
|
||
|
||
def preprocess_wav(fpath_or_wav: Union[str, Path, np.ndarray], | ||
source_sr: Optional[int] = None, | ||
normalize: Optional[bool] = True, | ||
trim_silence: Optional[bool] = True): | ||
""" | ||
Applies the preprocessing operations used in training the Speaker Encoder to a waveform | ||
either on disk or in memory. The waveform will be resampled to match the data hyperparameters. | ||
:param fpath_or_wav: either a filepath to an audio file (many extensions are supported, not | ||
just .wav), either the waveform as a numpy array of floats. | ||
:param source_sr: if passing an audio waveform, the sampling rate of the waveform before | ||
preprocessing. After preprocessing, the waveform's sampling rate will match the data | ||
hyperparameters. If passing a filepath, the sampling rate will be automatically detected and | ||
this argument will be ignored. | ||
""" | ||
# Load the wav from disk if needed | ||
if isinstance(fpath_or_wav, str) or isinstance(fpath_or_wav, Path): | ||
wav, source_sr = librosa.load(str(fpath_or_wav), sr=None) | ||
else: | ||
wav = fpath_or_wav | ||
|
||
# Resample the wav if needed | ||
if source_sr is not None and source_sr != sampling_rate: | ||
wav = librosa.resample(wav, source_sr, sampling_rate) | ||
|
||
# Apply the preprocessing: normalize volume and shorten long silences | ||
if normalize: | ||
wav = normalize_volume(wav, audio_norm_target_dBFS, increase_only=True) | ||
if webrtcvad and trim_silence: | ||
wav = trim_long_silences(wav) | ||
|
||
return wav | ||
|
||
|
||
def wav_to_mel_spectrogram(wav): | ||
""" | ||
Derives a mel spectrogram ready to be used by the encoder from a preprocessed audio waveform. | ||
Note: this not a log-mel spectrogram. | ||
""" | ||
frames = librosa.feature.melspectrogram( | ||
wav, | ||
sampling_rate, | ||
n_fft=int(sampling_rate * mel_window_length / 1000), | ||
hop_length=int(sampling_rate * mel_window_step / 1000), | ||
n_mels=mel_n_channels | ||
) | ||
return frames.astype(np.float32).T | ||
|
||
|
||
def trim_long_silences(wav): | ||
""" | ||
Ensures that segments without voice in the waveform remain no longer than a | ||
threshold determined by the VAD parameters in params.py. | ||
:param wav: the raw waveform as a numpy array of floats | ||
:return: the same waveform with silences trimmed away (length <= original wav length) | ||
""" | ||
# Compute the voice detection window size | ||
samples_per_window = (vad_window_length * sampling_rate) // 1000 | ||
|
||
# Trim the end of the audio to have a multiple of the window size | ||
wav = wav[:len(wav) - (len(wav) % samples_per_window)] | ||
|
||
# Convert the float waveform to 16-bit mono PCM | ||
pcm_wave = struct.pack("%dh" % len(wav), *(np.round(wav * int16_max)).astype(np.int16)) | ||
|
||
# Perform voice activation detection | ||
voice_flags = [] | ||
vad = webrtcvad.Vad(mode=3) | ||
for window_start in range(0, len(wav), samples_per_window): | ||
window_end = window_start + samples_per_window | ||
voice_flags.append(vad.is_speech(pcm_wave[window_start * 2:window_end * 2], | ||
sample_rate=sampling_rate)) | ||
voice_flags = np.array(voice_flags) | ||
|
||
# Smooth the voice detection with a moving average | ||
def moving_average(array, width): | ||
array_padded = np.concatenate((np.zeros((width - 1) // 2), array, np.zeros(width // 2))) | ||
ret = np.cumsum(array_padded, dtype=float) | ||
ret[width:] = ret[width:] - ret[:-width] | ||
return ret[width - 1:] / width | ||
|
||
audio_mask = moving_average(voice_flags, vad_moving_average_width) | ||
audio_mask = np.round(audio_mask).astype(np.bool) | ||
|
||
# Dilate the voiced regions | ||
audio_mask = binary_dilation(audio_mask, np.ones(vad_max_silence_length + 1)) | ||
audio_mask = np.repeat(audio_mask, samples_per_window) | ||
|
||
return wav[audio_mask == True] | ||
|
||
|
||
def normalize_volume(wav, target_dBFS, increase_only=False, decrease_only=False): | ||
if increase_only and decrease_only: | ||
raise ValueError("Both increase only and decrease only are set") | ||
dBFS_change = target_dBFS - 10 * np.log10(np.mean(wav ** 2)) | ||
if (dBFS_change < 0 and increase_only) or (dBFS_change > 0 and decrease_only): | ||
return wav | ||
return wav * (10 ** (dBFS_change / 20)) |
Oops, something went wrong.