Skip to content

Commit

Permalink
update README and Vignettes
Browse files Browse the repository at this point in the history
  • Loading branch information
stemangiola committed Jan 16, 2025
1 parent f3a330e commit 05403a2
Show file tree
Hide file tree
Showing 11 changed files with 99 additions and 1,010 deletions.
4 changes: 2 additions & 2 deletions R/utilities.R
Original file line number Diff line number Diff line change
Expand Up @@ -1968,8 +1968,8 @@ plot_2D_intervals = function(
geom_point(size = 0.2) +

# Add annotations
annotate("text", x = 0, y = 3.5, label = "Variable", size = 2) +
annotate("text", x = 5, y = 0, label = "Abundant", size = 2, angle = 270) +
annotate("text", x = 0, y = 3.5, label = "Variability", size = 2) +
annotate("text", x = 5, y = 0, label = "Abundance", size = 2, angle = 270) +

# Add text labels for significant cell groups
geom_text_repel(aes(c_effect, -v_effect, label = cell_type_label), size = 2.5, data = .x %>% filter(cell_type_label != "")) +
Expand Down
33 changes: 30 additions & 3 deletions README.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -21,9 +21,30 @@ For cellular omic data, no method for differential variability analysis exists,

**sccomp** is an extensive analysis framework that allows realistic data simulation and cross-study knowledge transfer. We demonstrate that mean-variability association is ubiquitous across technologies, highlighting the inadequacy of the very popular Dirichlet-multinomial modeling and providing essential principles for differential variability analysis.

<a href="https://www.youtube.com/watch?v=R_lt58We9nA&ab_channel=RConsortium" target="_blank">
<img src="https://img.youtube.com/vi/R_lt58We9nA/mqdefault.jpg" alt="Watch the video" width="280" height="180" border="10" />
</a>
<img src="inst/cartoon_methods.jpg" width="100%"/>

### Comparison with other methods

- **I**: Data are modelled as counts.
- **II**: Group proportions are modelled as compositional.
- **III**: The proportion variability is modelled as cell-type specific.
- **IV**: Information sharing across cell types, mean–variability association.
- **V**: Outlier detection or robustness.
- **VI**: Differential variability analysis.

| Method | Year | Model | I | II | III | IV | V | VI |
|--------------|------|------------------------------|---|----|-----|----|---|----|
| **sccomp** | 2023 | Sum-constrained Beta-binomial |||||||
| **scCODA** | 2021 | Dirichlet-multinomial ||| | | | |
| **quasi-binom.** | 2021 | Quasi-binomial || || | | |
| **rlm** | 2021 | Robust-log-linear | || | || |
| **propeller** | 2021 | Logit-linear + limma | |||| | |
| **ANCOM-BC** | 2020 | Log-linear | ||| | | |
| **corncob** | 2020 | Beta-binomial || || | | |
| **scDC** | 2019 | Log-linear | ||| | | |
| **dmbvs** | 2017 | Dirichlet-multinomial ||| | | | |
| **MixMC** | 2016 | Zero-inflated Log-linear | ||| | | |
| **ALDEx2** | 2014 | Dirichlet-multinomial ||| | | | |

```{r echo=FALSE}
knitr::opts_chunk$set( fig.path = "inst/figures/")
Expand All @@ -34,6 +55,12 @@ knitr::opts_chunk$set( fig.path = "inst/figures/")
Mangiola, Stefano, Alexandra J. Roth-Schulze, Marie Trussart, Enrique Zozaya-Valdés, Mengyao Ma, Zijie Gao, Alan F. Rubin, Terence P. Speed, Heejung Shim, and Anthony T. Papenfuss. 2023. “Sccomp: Robust Differential Composition and Variability Analysis for Single-Cell Data.” Proceedings of the National Academy of Sciences of the United States of America 120 (33): e2203828120. https://doi.org/10.1073/pnas.2203828120
[PNAS - sccomp: Robust differential composition and variability analysis for single-cell data](https://www.pnas.org/doi/full/10.1073/pnas.2203828120)

### Talk

<a href="https://www.youtube.com/watch?v=R_lt58We9nA&ab_channel=RConsortium" target="_blank">
<img src="https://img.youtube.com/vi/R_lt58We9nA/mqdefault.jpg" alt="Watch the video" width="280" height="180" border="10" />
</a>

```{r child="man/fragments/intro.Rmd"}
```

Expand Down
Loading

0 comments on commit 05403a2

Please sign in to comment.