C++11 metaprogramming library
Turbo is a library designed to provide compile-time utilities through template meta-programming.
One of the key points of C++, and where its expressiveness power comes from, is its ability to define new language constructs and/or customize existing constructs, all leading in a simple and clear syntax (See for example DSELs).
But when dealing with the creation and/or manipulation of such constructs, nothing is simple nor clear. Template-meta-programming is powerful, but suffers from a horrible syntax and the lack of high-level (meta)programming features.
Some people claim that tmp seems like a compile-time pure functional language built inside C++ itself. But instead meta-programming in C++ is more like a functional language with the worst syntax ever made (Despite LISP?).
This library aims to provide high-level constructs to aid with the manipulation of the C++ type system, and the creation and execution of complex computations at compile-time; all with a clear and uniform syntax. Also the library takes advantage of such features and provides some useful C++ (runtime) utilities, which are easy to implement thanks to Turbo.
Boost.MPL is the de facto meta programming library for C++. But it suffers from two main problems which, in my oppinion, makes difficult to work with it:
-
Is Boost: The Boost libraries are one of the best C++ libraries in the world, but they base the implementation of their features on many many tricks they implemented (See Boost.Preprocessor, for example). The problem with Boost is that making a project depend on the Boost libraries could be a problem, its a huge library. My intention was to rely on standard features only, that is, something which works perfectly providing a C++11 compliant compiler only.
-
Boost.MPL was designed on the C++98 era: C++11 is like a reboot of the language, and like in other parts of the language, meta-programming in C++11 is far easier than in C++98/03. The problem is that MPL was written for/using C++98/03 and its design is based in some cumbersome constructs which have been cleared and/or simplified a lot in C++11. Specifically, template aliases are a huge advantage when doing template-meta-programming, and the Turbo library relies on that in all of its features.
At this time (April 2014) the library is being completely rewritten from scratch.
The initial implementation suffers from some scalability issues due to problems (Bad design decisions?) on the base design and modules of the library.
To solve that problems, the library was completely redesigned, focusing the implementation on high-order meta-programming facilities to make developing new features easy, and reduce (Avoid, if possible=) coupling on different features of the library.
The reimplementation of the library is being developed at the reboot
branch. Its (currently) focused in a simple set of high-order features:
The goal is to create a way to evaluate any kind of expression the library could work with.
By convention, this library works with types only. There are no templates with value parameters, basic values are provided through boxing using wrappers like std::integral_constant
. Note that this is not required inside the implementation itself.
So an expression could be:
- A simple value (Like
int
). - A parametrized-expression: A parametrized expression is just an expression composed from a set of components. Because this is a template meta-programming library, the way to build expressions is through templates. So a parametrized expressions refers to any kind of template.
- A functional expression: This is a type of parametrized expression designed to return a value from a set of parameters. That is, a function. This library assumes that any expression with a
result
type member is a function.
//A simple expression
using e1 = int; //e1 is a simple expression
//A functional expression
using e2 = tml::function<int>; //e2 is a functional expression
//A more complex expression (A functional expression)
using e3 = tml::transform<tml::list<int,float,double>,tml::size_of<_1>>;
To evaluate an expression, one should evaluate the entire set of parameters of a parametrized expression, and return the result if the expression is a functional expression. Thats what tml::eval
is designed for:
//Just a simple identity metafunction:
template<typename T>
struct identity
{
using result = T;
};
using expression = identity<int>;
using result = tml::eval<expression>; //Compute the result of evaluating the expression.
using result = tml::eval<identity<identity<int>>>; //result is int
Also, tml::eval
could be used to take an expression and evaluate it with a new set of arguments. Following with the example above:
using binded = tml::eval<identity<int>,float>; //We evaluate identity<> with float instead of int as parameter
Or one could fill the expression with placeholders and evaluate the expression later when the arguments are available (Lazy evaluation):
using expression = f<_1,_2,_3>; //_1,_2, and _3 are placeholders
...
using result = tml::eval<expression,float,int,double>;
Because the library wrks with types only, lazy evaluation of metafunctions should be done filling the metafunction with
placeholders to properly instantiate it (See the example above).
Turbo provides the tml::lazy
template, designed to take a template parameter storing it, making possible to instantiate the
template later:
using t = tml::lazy<tml::function>; //t stores a tml::function metafunction
using instance = tml::lazy_instance<t,int>; //instance is tml::function<int>
Also tml::lazy
could be used to do lazy evaluation of metafunctions. For example:
using t = tml::lazy<tml::function>;
using result = tml::eval<t,int>; //Result is int (The result of evaluating tml::function<int>)
Finally tml::eval
abuses of function types and specializes itself to handle function types like
F(ARGS...)
as a metafunction call, where F
is a functional expression:
using F = tml::lambda<_1 , tml::add<_1,_1>>;
using i = tml::Int<1>;
using r = tml::eval<F(i)>;
For more information see the documentation inside eval.hpp
.
tml::eval
allows you to evaluate an existing expression with other arguments, but it hasn't enough power to be usable in all situations.
For example, tml::eval
only binds parameters of the main scope, so an expression with nested parametrized expressions can only be reevaluated specifying the most enclosing parameter (See the tml::eval binding examples above).
Turbo probides tml::let
, a high-order metafunction similar to haskell's let
Its purpose is to substitute a value on an expression, given an specific variable to bind the value with:
struct X{}; //A "variable"
using expression = tml::let<X,int,tml::function<X>>; // expression is "tml::function<int>"
The power of let comes from its ability to parse the entire expression recursively, substituting all occurrences of the variable with the specified value:
using expression = tml::let<X,float,f<X,int,tml::function<g<X,X>>>>; //Expression is f<float,int,tml::function<g<float,float>>>
Finally, Turbo extends that concept providing the tml::multi_let
template,
a template designed as a let of multiple variables:
using expression = tml::multi_let<X,Y,Z, //variables
int,char,double, //values
f<X,g<Y,Z>> //expression
>;
tml::multi_let
works currifying the multiple variable let into a chain of nested tml::let
expressions.
The ability of substituting a value in an expression provided by tml::let
makes possible to create lambda expressions without any special effort. Turbo provides the tml::lambda
template:
//Gets a list with the sizes of the specified types
using result = tml::transform<tml::lambda<_1,tml::size_of<_1>>,tml::list<float,int,double>>;
Multiple-variable lambda expressions are provided too:
//Returns true if at least one element of the SEQUENCE evaluates the predicate P to true
template<typename P , typename SEQUENCE>
using any_of = tml::foldl<tml::multi_lambda<_1,_2 , tml::logical_or<_1,tml::eval<P,_2>>>,SEQUENCE>;
Turbo implements a set of high-order metafunctions as algorithms provided by the algorithm.hpp
header.
Those algorithms mimic the most common functional high-order functions to provide building blocks for the rest
of the library:
//Compute the adition of a set of numbers at compile-time
template<typename... Ns>
using sum = tml::foldl<tml::lambda<_1,_2 , tml::add<_1,_2>>,tml::zero,tml::list<Ns...>>;
Turbo is a C++ library, but since template-meta-programming seems like a functional language, Turbo takes inspiration from functional languages such as Haskell.
For algorithms, C++ uses an iterator approach, when Haskell uses lists instead. Both approaches has advantages and cons,
so what approach we should use?
Turbo doesn't choose between, instead implements both using exactly the same interface! Turbo algorithms are designed to
work with sequences, and that sequences could be represented via typelists (tml::list
) or iterators:
using numbers = tml::integer_list<1,2,3,4,5>;
using squared = tml::map<tml::lambda<_1 , tml::mul<_1,_1>>,numbers>;
using squared = tml::map<tml::lambda<_1 , tml::mul<_1,_1>>,tml::begin<numbers>,tml::end<numbers>>;
The library provides the header iterator.hpp
, which implements metafunctions for iterators manipulation, such as tml::begin
, tml::end
, tml::rbegin
, tml::next
, tml::deref
, etc. The header provides the declaration of
the metafunctions, aliases, and the implementation metafunctions, all ready to be highly customizable by the user. This allows to write iterator-ready custom types specializing a small set of metafunctions only. When its done, everything automagically works!
By default Turbo provides an iterator implementation for typelists (See the example above) and integral values (See the numeric_iterators.hpp
header):
//Returns a list filled with the numbers on the interval [begin,end)
template<int begin , int end>
using integer_range = tml::map<tml::function<_>,
tml::forward_iterators::make_int<begin>,
tml::forward_iterators::make_int<end>
>;
The standard static_assert()
expects a boolean value as asserting condition. In mostly situations (Even using the Standard Library meta-programming facilities only) that condition comes in the form of a boolean type (Like std::integral_constant<bool,true>
).
Turbo implements the macro TURBO_ASSERT()
which is designed to work with such types without needing to extract the value via the ::value
member:
TURBO_ASSERT( (std::is_integral<int>) , "What happened????" );
The only standard way to throw warnings during compilation is the #warning
macro. But this warnings are checked during preprocessing time, and what a C++ (meta)programmer needs is a way to generate warnings depending on compile-time values
and/or templates.
Turbo implements a STATIC_WARNING()
macro, which generates a warning at template instantiation phase. This feature is based
in a deprecated
attribute trick, which will be standard in C++14. At this time, Turbo uses compiler-specific attributes.
The Standard template to do SFINAE, std::enable_if
, disables the instantiation of a template if a certain boolean condition is
not guaranteed. As in the static_assert()
case explained above, std::enable_if
expects a boolean value as condition. Also,
the member type ::type
of std::enable_if
should be explicitly referenced via the common and cumbersome typename ::type
construction.
Turbo provides the macros TURBO_ENABLE_IF()
and TURBO_DISABLE_IF()
, which makes SFINAE clean and easy. For example:
template<typename T , typename SFINAE_FLAG = tml::sfinae_result>
struct f;
template<typename T>
struct f<T , TURBO_ENABLE_IF( std::is_floating_point<T> )>
{};
There are cases where a template should be enabled/disabled depending in many conditions. This could be achieved passing
a complex boolean expression to std::enable_if
(Or TURBO_ENABLE/DISABLE_IF()
).
Instead Turbo implements a so-called sfinae container, that is, a template designed to store multiple SFINAE entities like std::enable_if
and behave itself as a big enable_if
. That template is enabled (ie declares a ::type
member) if and only
if all the SFINAE entities passed are enabled.
Also Turbo provides some macros, TURBO_SFINAE_ALL()
, TURBO_SFINAE_ANY()
, ENABLE_IF()
, and DISABLE_IF()
to build such sfinae containers easily. The combination of these features makes possible to write multiple-condition SFINAE expressions in a clear and concise syntax:
//Following with the f example above, now we define another f specialization:
template<typename T>
struct f<T , TURBO_SFINAE_ALL( DISABLE_IF( std::is_floating_point<T> ),
ENABLE_IF( std::is_default_constructible<T>)
)>
{
};
The function tml::to_runtime<T>()
returns a runtime constant equivalent to the spefied compile-time value T
. Its designed to provide a clear interface between the compile-time and runtime sides of a program. For example:
//Compute the range of ints [10,20) at compile-time
using numbers = tml::integer_range<10,20>;
//Print that numbers at runtime:
for( int i : tml::to_runtime<numbers>() )
std::cout << i << " ";
10 11 12 13 14 15 16 17 18 19
Turbo implements its own floating-point type to perform compile-time computations. The implementation doesn't follow any specific standard (i.e. IEEE 754), its only a working (on...) implementation with the following characteristics:
- 32 bit mantissa with no implicit extra 1 (The mantissa is 32 bits wide, and the precision of the resulting number is 32 bits too. Thats done to simplify debugging).
- 16 bit exponent.
using one = tml::floating::number<tml::floating::sign_t::positive , -31 , 0x80000000>;
using two = tml::eval<tml::add<one,one>>; //two is [+|-30|0x80000000]
using three = tml::eval<tml::add<one,two>>; //three is [+|-30|0xC0000000]
Several metafunction are provided for easy initialization of floating-point values:
using two = tml::floating::integer<2>;
using sqrt_two = tml::eval<tml::sqrt<two>>;
using pi = tml::floating::decimal<3,141592654>;
int main()
{
std::cout << tml::to_string<two>() << std::endl
<< tml::to_runtime<two>() << std::endl;
std::cout << tml::to_string<sqrt_two>() << std::endl
<< tml::to_runtime<sqrt_two>() << std::endl;
std::cout << tml::to_string<pi>() << std::endl
<< tml::to_runtime<pi>() << std::endl;
}
[+|-30|10000000000000000000000000000000]
2
[+|-31|10110101000001001111001100110110]
1.41421
[+|-30|11001001000011111101101010100010]
3.14159
The library is designed to do all the required computations at compile-time with zero runtime overhead when using the results. That means the floating-point values (Actually stored as double
s on the runtime side) should be completely available and known at compile-time.
Given this code, which computes N (10 in the example) consecutive floating-point numbers at compile-time:
template<std::size_t N>
using generate_numbers = tml::foldl<tml::lambda<_1,_2 , tml::lists::func::push_front<_1,tml::add<tml::lists::func::head<_1>,tml::floating::integer<1>>>> , tml::list<tml::floating::integer<0>> , tml::integral_forward_iterators::make_size_t<0> , tml::integral_forward_iterators::make_size_t<N>>;
int main()
{
using numbers = generate_numbers<10>;
for( double n : tml::to_runtime<numbers>() )
std::cout << n << std::endl;
}
Yields to the following code for the tml::to_runtime()
instance:
_ZN3tml4impl10to_runtimeINS_4listIJNS_8floating6numberILNS3_6sign_tE1ELsn28ELj2684354560EEENS4_ILS5_1ELsn28ELj2415919104EEENS4_ILS5_1ELsn28ELj2147483648EEENS4_ILS5_1ELsn29ELj3758096384EEENS4_ILS5_1ELsn29ELj3221225472EEENS4_ILS5_1ELsn29ELj2684354560EEENS4_ILS5_1ELsn29ELj2147483648EEENS4_ILS5_1ELsn30ELj3221225472EEENS4_ILS5_1ELsn30ELj2147483648EEENS4_ILS5_1ELsn31ELj2147483648EEENS4_ILS5_1ELsn31ELj0EEEEEEE5arrayE:
.quad 4621819117588971520 # double 1.000000e+01
.quad 4621256167635550208 # double 9.000000e+00
.quad 4620693217682128896 # double 8.000000e+00
.quad 4619567317775286272 # double 7.000000e+00
.quad 4618441417868443648 # double 6.000000e+00
.quad 4617315517961601024 # double 5.000000e+00
.quad 4616189618054758400 # double 4.000000e+00
.quad 4613937818241073152 # double 3.000000e+00
.quad 4611686018427387904 # double 2.000000e+00
.quad 4607182418800017408 # double 1.000000e+00
.quad 0 # double 0.000000e+00
.size _ZN3tml4impl10to_runtimeINS_4listIJNS_8floating6numberILNS3_6sign_tE1ELsn28ELj2684354560EEENS4_ILS5_1ELsn28ELj2415919104EEENS4_ILS5_1ELsn28ELj2147483648EEENS4_ILS5_1ELsn29ELj3758096384EEENS4_ILS5_1ELsn29ELj3221225472EEENS4_ILS5_1ELsn29ELj2684354560EEENS4_ILS5_1ELsn29ELj2147483648EEENS4_ILS5_1ELsn30ELj3221225472EEENS4_ILS5_1ELsn30ELj2147483648EEENS4_ILS5_1ELsn31ELj2147483648EEENS4_ILS5_1ELsn31ELj0EEEEEEE5arrayE, 88
We all hate C++ mangling, isn't?
Which is exactly the expected behavior: Floating-point values injected into the executable, with no runtime overhead.
The features explained above have some implementation issues (Working on...):
-
Template specialization priority issues. A ISO C++ Standard bug?: The initial implementation of
tml::eval
consisted on three different cases (Partial specializations), one for each kind of expression the library is capable of evaluate:-
Simple values: The result of evaluating a value is the value itself
using result = tml::eval<tml::Int<0>>; //result is Int<0> using result = tml::eval<int>; //result is int
-
Parametrized expressions: Parametrized expressions are not functions, but their parameters could be anything, so they must be evaluated
using vector = tml::eval<std::vector<tml::function<int>>>; // vector is std::vector<int>
-
Functional expressions: Same as parametrized expressions, but they have a result which should be computed (Extracted)
using myint = tml::eval<tml::function<int>>; //myint is int
-
Functional expressions with binded arguments:
tml::eval
could be used to reevaluate an existing (Instanced) functional expression with a new set of parametersusing result = tml::eval<tml::function<int>,double>; //result is double
In addition to this generic cases, the user could explicitly specialize the implementation of
tml::eval
(The internal templatetml::impl::eval
) to maketml::eval
work in a custom and specific way. For example:struct foo {}; //We customize tml::eval saying the result of evaluating 'foo' is 'int' template<> struct eval<foo> : public tml::function<int> {};
When the specialized expression is complex (Like a template
template<typename T> struct bar{};
) that specialization has conflicts with the default generic specializations. The common sense says that our custom specialization should be instanced, becausebar<T>
is more specialized thanF<T>
(The generic functional case).
Instead, the generic specialization is instanced or the compilation fails due to ambiguous template specializations (Depending on the compiler).This situation was discussed for two weeks, and after some effort we concluded this is an issue on the wording of the ISO Standard, specifically:
If for each type being considered a given template is at least as specialized for all types, and
more specialized for some set of types and the other template is not more specialized for any types, or
{the other template} is not at least as specialized for any types,
then the given template is more specialized than the other template.An ambiguity problem very similar to an official ISO C++ issue which has no official resolution (At June 2014).
The situation was solved using SFINAE and a custom registry metafunction which specifies if a certain kind of expression overrides the default behavior of
tml::eval
. Note that its only a workaround, the bug on the template specialization rules is still there. -
-
tml::impl::multi_lambda
evaluation doesn't work on GCC: The multiple-variable lambda template is defined as follows:template<typename... VARIABLES , typename BODY> struct multi_lambda { template<typename... ARGS> using result = tml::eval<tml::multi_let<VARIABLES..., ARGS..., BODY > >; };
Later
tml::impl::multi_lambda
overridestml::eval
to call the::result
template alias properly:template<typename... VARIABLES , typename BODY> struct overrides_eval<tml::impl::multi_lambda<VARIABLES...,BODY>> : public tml::true_type {}; template<typename... VARIABLES , typename BODY , typename... ARGS> struct eval<tml::impl::multi_lambda<VARIABLES...,BODY>,tml::list<ARGS...>> : public tml::function<typename tml::impl::multi_lambda<VARIABLES...,BODY>::template result<ARGS...>> {};
The evaluation of that lambda does not work on GCC. After some discussions and tests I'm sure this code is valid, seems like a GCC bug. This project was reconfigured to use the LLVM/CLang toolchain, where this code works perfectly.
-
The
TURBO_ASSERT()
macro overloading doesn't work on LLVM/CLang:TURBO_ASSERT()
is a macro "overloaded", making possible to pass one or two parameters depending on the use case.
The macro overloading is an old trick to define macros with different number of parameters, but with the same name.TURBO_ASSERT()
was implemented and tested using GCC 4.8.2, but the overloading doesn't work properly on LLVM/CLang toolchain for some reason.Currently fixed, was a bug on the
SELECT_ARG_3(...)
macro. -
Lambda body and placeholders evaluation: As explained above in the
Features
entry, Turbo implements lambda expressions as Haskell-like let expressions where the lambda variables are substituted with the value of the parameters at the point of lambda evaluation:using l = tml::lambda<_1 , tml::function<_1>>; using result = tml::eval<l,int>; //result is int
Even if
tml::eval
is specialized to take care of placeholders, there are cases when expressions depending ontml::eval
evaluation are not correctly evaluated because they have placeholders. Consider this example:template<typename F , typename SEQ> using any_of = tml::foldl<tml::lambda<_1,_2 , logical_or<_1,tml::eval<F,_2>>>,tml::false_type,SEQ>;
This sentence defines a metafunction
any_of
, which returns true if almost one element of a sequence evaluates to true certain predicate. Its implemented using a metafunction provided by the Turbo "algorithm.hpp" header, a Haskell-likefoldl
metafunction (Similar tostd::accumulate()
). The combination metafunction passed totml::foldl
is written in the form of a binary lambda expression, which computes the logical or between the current state of the computation and the current element of the sequence. "Readable" functional programming at compile-time in C++. Cool, isn't?But that doesn't work. Note that the
tml::eval
written inside the lambda body is instanced (Executed) before the substitution of the lambda variables (The placeholders). To deal with that situations, a templatetml::delayed_eval
(tml::deval
) was designed to hold atml::eval
-like expression inside let expressions. During the let execution,tml::delayed_eval
is substituted bytml::eval
after variable substitution. The correcttml::any
implementation should be:template<typename P , typename SEQUENCE> using any = tml::foldl<P,tml::lambda<_1,_2 , tml::logical_or<_1,tml::deval<P,_2>>>>,tml::false_type,SEQUENCE>;
This solution successfully solved the problem on unary lambdas, but it doesn't work on multiple-variable lambda expressions, probably because of the curryfication process.
Fixed, it was a bug on the currifier
Turbo provides a set of features to simplify type manipulation and compile-time computations:
Turbo implements demangling for the most common compilers1 to provide a function which returns the std::string
representation of a type. For example:
#include "to_string.hpp"
#include <iostream>
#include <vector>
int main()
{
std::cout << mpl::to_string<std::vector<int>>() << std::endl;
}
Output:
vector<int>
[1] GCC and MSVC only demangling implementation yet.
Turbo provides a set of predefined templates which are equivalent to the most common C++ basic types, such as bool
, char
, integer
, etc: mpl::boolean
,
mpl::character
, mpl::integer
.
The function mpl::to_string()
is specialized to provide a natural and readable string value of the wrappers. For example:
#include "basic_types.hpp"
#include "to_string.hpp"
#include <iostream>
int main()
{
using bool_value = mpl::boolean<true>;
using char_value = mpl::character<'a'>;
using integer_value = mpl::integer<10>;
std::cout << mpl::to_string<bool_value>() << " ";
std::cout << mpl::to_string<char_value>() << " ";
std::cout << mpl::to_string<integer_value>();
}
Output:
true a 10
The library provides a set of default metafunctions to perform arithmetic, bitshift, logical, and comparison operations with the basic type wrappers. Type casting is correctly performed in that computations to avoid signed-unsigned overflows and other related problems:
#include "operators.hpp"
#include "basic_types.hpp"
int main()
{
using a = mpl::uinteger<1>;
using b = mpl::integer<2>;
using c = mpl::add<a,b>; //c is mpl::integer<3>
}
Turbo overloads the most common operators to implement expression templates and provide, within type inspection through the decltype
specifier, the functions described above in a more comfortable syntax. This is specially useful when the expressions are complex. For example:
#include "operators.hpp"
#include "basic_types.hpp"
#include "expressions.hpp"
int main()
{
using x = mpl::integer<1>;
using y = mpl::integer<2>;
using z = mpl::integer<3>;
//The following expression is equivalent to
//mpl::add<mpl::add<mpl::mul<x,x>,mpl::mul<y,y>>,mpl::mul<z,z>>;:
using square_length = decltype( x()*x() + y()*y() + z()*z() );
}
NOTE: This is an example of the computation of the length of a 3d vector at compile-time. The example computes the square-length of the vector, because the square_root
function still is not implemented.
Turbo implements variadic-template based typelists through the mpl::list
class:
#include "list.hpp"
#include "to_string.hpp"
using list = mpl::list<bool,char,int,float,double>;
int main()
{
std::cout << mpl::to_string<list>() << std::endl;
}
[bool,char,int,float,double]
The library provides a set of list operations available for typelists: Splitting, concating, inserting, erasing, etc:
#include "list.hpp"
#include "to_string.hpp"
using list = mpl::list<bool,char,int,float,double>;
using index = mpl::index_of<list,float>; //index is mpl::size_t<3>
using a = typename mpl::split<list,mpl::size_t<2>>::left;
using b = typename mpl::split<list,mpl::size_t<2>>::right;
using c = mpl::concat<b,a>;
int main()
{
std::cout << mpl::to_string<list>() << std::endl;
std::cout << mpl::to_string<a>() << std::endl;
std::cout << mpl::to_string<b>() << std::endl;
std::cout << mpl::to_string<c>() << std::endl;
}
[bool,char,int,float,double] [bool,char,int] [float,double] [float,double,bool,char,int]
Using the list operations showed above Turbo implements a sorting metafunction1 which can be used to sort types with the specified criteria. For example:
#include "list.hpp"
#include "sort.hpp"
using list = mpl::list<double,char,float,int,
template<typename T , typename U>
using comparer = mpl::boolean<(sizeof(T) >= sizeof<(U))>;
using sorted_list = mpl::sort<list,comparer>;
int main()
{
std::cout << mpl::to_string<sorted_list>() << std::endl;
}
[double,int,float,char]
[1] mpl::sort
uses the quickosrt sorting algorithm by default, but this metafunction is parametrized to allow specifying other algorithms. The metafunction is defined as:
template<
typename LIST ,
template<typename,typename> class COMPARER = mpl::greather_than ,
template<typename,template<typename,typename>class> class ALGORITHM = mpl::qsort
>
using mpl::sort = /* ... */
so you can implement your own sorting algorithm and pass it to the metafunction. For example:
template<typename LIST , template<typename,typename> class COMPARER>
struct my_stupid_sorting_algorithm
{
using result = LIST;
};
using list = mpl::list<int,char,bool>;
using sorted_list = mpl::sort<list,mpl::less_than,my_stupid_sorting_algorithm>;
Turbo implements the iterator dessign pattern to provide an easy way to trasverse ranges or intervals, such as numeric intervals or a part of a typelist. The library defines three types of iterators:
- Forward iterators: Are iterators designed to trasverse a range forwards (From begin to end).
- Forward iterators: This type of iterators are designed to trasverse a range form its end to its begin (In the backwards direction).
- Bidirectional iterators [DEPRECATED]: Are iterators which can advance in any direction.
The library provides a set of metafunctions to work with iterators:
-
Functions to get iterators: Are functions to create iterators from things to trasverse it:
mpl::begin
,mpl::end
,mpl::rbegin
,mpl::rend
. -
Functions to manipulate iterators:
mpl::next
,mpl::previous
[DEPRECATED]. All of the metafunctions above can be specialized to implement user-defined iterators. In fact the library provides specializations to work with typelists and integral numbers. For example:#include "iterators.hpp" #include "numeric_iterators.hpp" #include "list.hpp" #include "basic_types.hpp"
using list = mpl::list<bool,char,int,float>; using begin = mpl::begin; using end = mpl::end;
/* A metafunction to print values of a typelist: */
teplate<typename BEGIN , typename END> struct print_list { static void execute() { std::cout << mpl::to_string() << std::endl;
print_list<mpl::next<BEGIN>,END>::execute(); }
};
template struct print_list<END,END> { static void execute() {} };
/* Possible usage: */
using printer = print_list<mpl::begin , mpl::end>; using partial_printer = print_list<decltype( mpl::begin() + mpl::size_t<2>() ) , mpl::end>;
int main() { printer::execute(); std::cout << std::endl; partial_printer::execute(); }
bool char int float
int float
For integral types the library provides a set of utility functions to make iterators from integral values. The example above could be rewritten to work with unsigned ints:
using printer = print_list<mpl::make_uinteger_backward_iterator<10> , mpl::make_uinteger_backward_iterator<0>>;
10
9
8
7
6
5
4
3
2
1
A common problem with template-meta-programming and variadic templates is to execute an operation over a set of values (types). That leads to witing recursive metafunctions everytime we need to do that kind of operations.
Turbo provides the metaloops mpl::for_loop
and mpl::for_each
to simplify the implementation of that kind of things.
That loops works through iterators: What the loops do is to execute the specified kernel (The operation to be performed) through the range represented by the iterators. Finally, the loop returns the result.
This loop is designed to apply the specified kernel to every type from a set of types, and return a typelist filled with the set of applications. Its equivalent "runtime" code is:
template<typename iterator_type , typename result_type> std::vector<result_type> for_each(iterator_type begin , iterator_type end , result_type(*)(typename iterator_type::value_type) kernel) { std::vector<result_type> output;
for( auto& it = begin ; it != end ; ++it)
output.push_back( kernel(*it) );
return output;
}
A kernel is a metafunction of the form:
template<typename CURRENT>
struct kernel
{
using result = /* Operation involving CURRENT */
};
In other words, a one parameter function.
What mpl::for_each
returns is the list of applications, that is, the set of kernel::result
from each type.
For example:
using list = mpl::list<bool,char,float,int,double>;
using begin = mpl::begin<list>;
using end = mpl::end<list>;
//A kernel: It returns the size of the type specified
template<typename T>
struct compute_sizeof
{
using result = mpl::size_t<sizeof(T)>;
};
using result = mpl::for_each<begin,end,compute_sizeof>;
int main()
{
std::cout << mpl::to_string<result>() << std::endl;
}
Output:
[1,1,4,4,8]
Note that a kernel is a metafunction of one parameter which returns via a result
alias. Thats exatly the signature of mpl::function
, so you could use mpl::function
to simplify the implementation of a kernel. The example above could be rewriten as:
template<typename T>
using compute_sizeof = mpl::function<mpl::size_t<sizeof(T)>>;
In addition, you could specify a filter (A boolean predicate) to discard elements of the input which does not fullfill a requeriment. Following with the example above:
...
template<typename T>
using filter = mpl::boolean<sizeof(T) % 2 == 0>;
using result = mpl::for_each<begin,end,compute_sizeof,filter>;
...
Now the output is:
[4,4,8]
mpl::for_loop
is designed to execute iterative computations, in other words, does a loop over a range, and the kernel does computations over that range, storing the result and using the previous value of the result. This could be viewed as a for loop with an aux varialbe which stores the result of the computation, and the body of that loop (The kernel acts as the body of the loop). For example:
int result;
for(auto& it = begin ; it != end ; ++it)
{
result = *it * result;
}
So the kernel has two parameters: The current value of the iterator and the previous value of the result:
template<typename CURRENT , typename PREVIOUS_RESULT>
struct kernel
{
using result = /* ... */
};
The loop passes the result
of the current kernel application to the next iteration. So the loop needs the initial value of the "aux variable". mpl::for_loop
is defined as follows:
template<typename BEGIN , typename END , typename INITIAL_VALUE , template<typename,typename> class KERNEL> using for_loop = /.../
In addition, a kernel of a for loop must define a public boolean constant that specifies if the loop should be aborted. In other words, the user could specify a break condition for the loop through the kernel:
template<typename CURRENT , typename PREVIOUS_RESULT> struct kernel { using result = /* ... / static const bool abort = / ... */ };
An example of the use of mpl::for_loop
could be the computation of the summation of a range of numbers:
using begin = mpl::make_uinteger_forward_iterator<0>; using end = mpl::make_uinteger_forward_iterator<10>;
template<typename CURRENT_VALUE , typename PREVIOUS_RESULT> struct kernel : public mpl::no_abort_kernel //This defines the abort flag as false { using result = mpl::add<PREVIOUS_RESULT,CURRENT_VALUE>; };
using result = mpl::for_loop<begin,end,mpl::uinteger<0>,kernel>;
int main() { std::cout << mpl::to_string() << std::cout; } Output:
45
Turbo implements decimal fixed-point arithmetic through the mpl::fixed_point
type. This type provides compile-time fixed-point arithmetic through specializations of the arithmetic metafunctions described above.
mpl::fixed_point
implements decimal fixed-point numbers with the specified precision (The number of digits which represent the fractional part of the number):
template<mpl::fixed_point_bits BITS , mpl::fixed_point_precission PRECISION>
struct fixed_point {};
By default mpl::fixed_point_bits
is a long long int
, that is, is 64 bits length. So mpl::fixed_point
could represent decimal numbers up to 19 digits. Of course that 19 digits include the fractional digits. By default Turbo sets the precision of mpl::fixed_point
at 8 digits.
The way to instantiate fixed point numbers is tu cumbersome, because you have to take into account the precision of the number and provide the full integer number. For example:
using pi = mpl::fixed_point<314150000,8>; //3,1415 with 8 digits precision
To deal with that problem, the library provides the alias mpl::decimal
, which implements decimal scientific notation:
using pi = mpl::decimal<31415,-4>; //31415 x 10^-4 (3,1415)
Of course mpl::fixed_point
specializes mpl::to_string
:
#include "fixed_point.hpp"
#include "expressions.hpp"
#include "to_string.hpp"
using pi = mpl::decimal<314159265,-8>; //3,14159265
using radious = mpl::decimal<10>; //10
using circle_length = decltype( mpl::decimal<2>() * pi() * radious() );
int main()
{
std::cout << "Radious: " << mpl::to_string<radious>() << std::endl;
std::cout << "Circle length: " << mpl::to_string<circle_length>() << std::endl;
}
Radious: 10
Circle length: 62,831853
In addition to the arithmetic operations shared with the integral values, Turbo implements compile-time trigonometric functions such as sine and cosine through Taylor-McLaurin series:
#include "trigonometry.hpp"
#include "fixed_point.hpp"
#include "to_string.hpp"
using deg_0 = mpl::decimal<0>;
using deg_45 = decltype( math::pi() / mpl::decimal<4>() );
using deg_90 = decltype( math::pi() / mpl::decimal<2>() );
int main()
{
std::cout << "sin(0º) = " << mpl::to_string<math::sin<deg_0>>() << std::endl;
std::cout << "sin(45º) = " << mpl::to_string<math::sin<deg_45>>() << std::endl;
std::cout << "sin(90º) = " << mpl::to_string<math::sin<deg_90>>() << std::endl;
std::cout << "cos(0º) = " << mpl::to_string<math::cos<deg_0>>() << std::endl;
std::cout << "cos(45º) = " << mpl::to_string<math::cos<deg_45>>() << std::endl;
std::cout << "cos(90º) = " << mpl::to_string<math::cos<deg_90>>() << std::endl;
}
sin(0º) = 0
sin(45º) = 0,707107
sin(90º) = 1
cos(0º) = 1
cos(45º) = 0,07107
cos(90º) = 1e-08
As the example shows, the implementation has little precision errors (cos(90º)
should be zero). Turbo uses a MacLaurin series aproximation of 10 terms by default, but the arithmetric functions are parametrized to allow specifying the number of terms used in the aproximations:
using cos_deg_90 = math::cos<deg_90,mpl::uinteger<200>>; //cos(90º) computed using 200 terms.
The library implements a square root function, math::sqrt
, computing the value through the Newton's method to aproximate function roots:
using two = mpl::decimal<2>; using result = math::sqrt;
int main() { std::cout << mpl::to_string() << std::endl; } Output:
1,4142
Turbo implements 3x3 and 4x4 matrices to provide compile-time matrix algebra. It supports matrix addition, substraction, and multiplication. For example:
#include "matrix3x3.hpp"
using unity = math::unity3x3mpl::decimal using a = decltype( (unity() * unity()) * mpl::decimal<4>() ); using b = decltype( a() + a() );
int main() { std::cout << mpl::to_string() << std::endl; }
| 8 0 0 |
| 0 8 0 |
| 0 0 8 |
In adition to matrices, Turbo implements 2d/3d/4d vectors and provides transformation matrices such as rotations, scales, translations, etc. For example:
#include "matrix4x4.hpp" #include "vector.hpp"
using v1 = math::vec3<mpl::decimal<1> , mpl::decimal<1> , mpl::decimal<1>>; using translation = mpl::vector<mpl::decimal<1> , mpl::decimal<0> , mpl::decimal<0>>; using angle = decltype(math::pi() / mpl::decimal<2>()); using transformation = decltype( math::translate() * mpl::rotate<angle,math::x_axis>() ); using v2 = decltype( transformation() * v1() );
int main() { std::cout << mpl::to_string() << std::endl; std::cout << mpl::to_string() << std::endl; }
(1,1,1)
(2,1,-1)
Turbo explodes C++11 generalized constant expressions to manipulate raw strings and create types (metavariables) which the library can work with using template metaprogramming. For example:
#include "string.hpp"
#include "to_string.hpp"
//TURBO_STRING_VARIABLE() macro defines a new string metavariable which holds the specified string:
TURBO_STRING_VARIABLE( hello , "hello " );
TURBO_STRING_VARIABLE( world , "world!" );
using hello_world = tml::concat<hello,world>;
int main()
{
std::cout << tml::to_string<hello_world>() << std::endl;
}
hello world!
I'm currently working in a compile-time time manipulation library (tml::chrono
namespace), based on the Standard std::chrono
library.
Also I'm working on compile-time random number generation facilities, using the features of tml::chrono
as seed.